СФЭ не учитывают тот факт, что реальные устройства работают во времени. По сравнению с СФЭ конечный автомат является более точной моделью дискретного преобразователя информации. При этом понятие конечного автомата, как и любая модель, связано с рядом упрощающих предположений.
Во-первых, предполагается, что вход и выход автомата в каждый момент времени может находиться только в одном из конечного числа различных состояний. Если реальный преобразователь имеет непрерывный входной сигнал, то для его описания с помощью конечного автомата необходимо провести квантование этого сигнала. В формальном определении автомата конечный набор состояний входа и выхода автомата называется соответственно входным и выходным алфавитом, а отдельные состояния – буквами этих алфавитов.
Во-вторых, предполагается, что время изменяется дискретно. Состояния входа и выхода соответствуют дискретной временной последовательности Поскольку момент времени однозначно определяется его индексом, то с целью упрощения будем считать, что время принимает значения 1, 2, …, , … Временной промежуток называется тактом.
Работа автомата представляется следующим образом.
На вход автомата поступают сигналы из входного алфавита , что приводит к появлению сигналов на выходе из входного алфавита . Зависимость выходной последовательности от входной зависит от внутреннего устройства автомата. Заметим, что в отличие от СФЭ, которые не обладают памятью, автомат представляет собой устройство с памятью, т. е. выход автомата определяется не только входом , но и предысторией . Учет предыстории осуществляется зависимостью выходного сигнала не только от входа, но и от текущего состояния, которое обозначим .
Дадим формальное определение автомата.
Конечным автоматом называют пятерку объектов
, (1)
где
– конечное множество, называемое входным алфавитом; – одно из возможных состояний входа;
– конечное множество, называемое выходным алфавитом; элементы этого множества определяют возможные состояния выхода;
– конечное множество, называемое алфавитом внутренних состояний;
– функция переходов автомата: ; эта функция каждой паре «вход-состояние» ставит в соответствие состояние;
– функция выходов автомата: ; эта функция каждой паре «вход-состояние» ставит в соответствие значение выхода.
Закон функционирования автомата: автомат изменяет свои состояния в соответствии с функцией и вырабатывает выходные сигналы в соответствии с функцией :