русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Распределение электрического потенциала в объеме полупроводника.


Дата добавления: 2015-08-31; просмотров: 1390; Нарушение авторских прав


Выделим мысленно бесконечно тонкий слой dx электронного газа, заключенный между плоскостями I и II с координатами х и x+dx. Этот слой будет испытывать со стороны окружающего электронного газа давление Р1 слева и Р2 справа. Давление газа, как известно, равно nkT, где n- концентрация частиц этого газа. Обозначим концентрацию электронов в плоскости 1 через n1 а в плоскости II через n2. Тогда разность давлений ∆Р на рассматриваемый слой будет равна:

 

(7.1)

 

Сила перепада давлений, действующая на слой dx, будет равна:

 

(7.2)

 

где s- площадь границ слоя. Знак " - " показывает, что эта сила противоположна направлению вектора градиента концентрации электронов.

Определим силу электрического поля, действующую на тот же слой. Электрический заряд слоя ∆Q равен:

 

(7.3)

 

Электрическая сила , действующая на слой, будет равна:

 

(7.4)

 

В состоянии равновесия сумма сил, действующих на слой, равна нулю. Следовательно:

 

или

(7.5)

 

Так как , то

(7.6)

 

Решая это дифференциальное уравнение, получим:

 

(7.7)

 

Рассуждая аналогично в отношении дырочного газа, найдем, что

 

(7.8)

 

Константы интегрирования С1 и С2 определяются как всегда из граничных условий. Начало координат мы поместили в глубине однородной области I полупроводника. Здесь выполняется условие локальной электрической нейтральности и поле отсутствует. Примем потенциал этой области в окрестности начала координат равным нулю. Тогда, подставляя в (7.7) и (7.8) значения x = 0; U = 0; n = n1; p = p1, получим С1= n1, С2 = р1. Следовательно:

(7.9)

(7.10)

Таким образом, концентрация СНЗ и потенциал в электрическом переходе связаны между собой экспоненциальной зависимостью.



Распределение потенциала в переходе определим, решив уравнение Пуассона. Плотность пространственного заряда в любом слое равна:

 

(7.11)

 

или, учитывая (7.9) и (7.10):

 

(7.12)

 

Следовательно, уравнение Пуассона будет иметь вид:

 

(7.13)

 

Поскольку распределение примесей, т.е. (Nd-Na) = ƒ(х) известно, то, решая (7.13), найдем U = U(x).

Так как соотношения (7.9) и (7.10) должны быть справедливы для любого элемента объема полупроводника, то, применяя их для второй однородной области, где концентрации электронов и дырок соответственно равны n2 и p2 получим, что потенциал этой области U2 равен:

 

(7.14)

 

Разность потенциалов на концах электрического перехода пропорциональна логарифму отношения концентраций однотипных СНЗ в однородных областях полупроводника, разделенных переходом. Эта разность называется контактной разностью потенциалов перехода.

 

 

 

 

Деба́евская длина (дебаевский радиус) — расстояние, на которое распространяется действие электрического поля отдельного заряда в нейтральной среде, состоящей из положительно и отрицательно заряженных частиц (плазма, электролиты). Вне сферы радиуса дебаевской длины электрическое поле экранируется в результате поляризации окружающей среды (поэтому это явление еще называют экранировкой Дебая).

Дебаевская длина определяется формулой (СГС):

(СИ) :

где: , , — электрический заряд, концентрация частиц и температура частиц типа ; , — постоянная Больцмана и диэлектрическая проницаемость вакуума. Суммирование идет по всем сортам частиц, при этом должно выполняться условие нейтральности: . Важным параметром среды является число частиц в сфере радиуса дебаевской длины:

 




<== предыдущая лекция | следующая лекция ==>
Включение тиристорной структуры сигналом управления. Параметры процесса включения тиристора. | Как использовать условное форматирование и копировать его.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.151 сек.