русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Сумматоры.


Дата добавления: 2015-08-31; просмотров: 4548; Нарушение авторских прав


Сумматоры – это класс КЦУ, выполняющих операцию арифметического сложения двух двоичных n-разрядных чисел. Сумматоры бывают полными и неполными. Неполный сумматор или полусумматор - это комбинационное устройство с двумя входами и двумя выходами, выполняющее операцию сложения двух одноразрядных чисел в соответствии с таблицей истинности, где А и В – входные одноразрядные числа, Sп/см. – выход суммы, а Pп/см. – выход переноса в старший разряд:

Входы Выходы
А В Sп/см. Pп/см.

Записанные по таблице истинности ФАЛ для переменных Sп/см. и Pп/см. имеют вид

,

.

Первое уравнение для Sп/см. обозначает операцию Исключающее ИЛИ (Сложение по модулю два), а второе - для Pп/см. – операцию логической конъюнкции. Поскольку во всех сериях микросхем имеются элементы Исключающее ИЛИ, то структурную схему полусумматора удобно синтезировать на основе именно этого элемента и элемента И (рис. 4.6,а). Условное графическое обозначение полусумматора приведено на рис. 4.6,б.

 

а) б)

Рис. 4.6.Структурная схема и УГО полусумматора.

Полный одноразрядный сумматор выполняет операцию арифметического сложения двух одноразрядных чисел A и B с учетом переноса из младшего разряда Р-1. Он имеет три входа и два выхода. Работа полного одноразрядного сумматора задается таблицей истинности:

 

Входы Выходы
A B Р-1 S P

Записав СДНФ для переменных S и P и выполнив ряд тождественных преобразований можно получить следующие ФАЛ для полного сумматора:



,

.

Выражение есть ни что иное, как значение выхода переноса полусумматора над величинами Sп/см. и Р-1. Учитывая этот факт и анализируя полученные логические уравнения, можно сделать заключение о возможности реализации полного сумматора на основе двух полусумматоров и одного элемента ИЛИ. Структура полного одноразрядного сумматора представлена на рис. 4.7,а, а его УГО – нарис. 4.7,б.

а) б)

Рис. 4.7. Схема и УГО полного одноразрядного сумматора.

Из таблицы истинности полного одноразрядного сумматора очевидно, что на выходе суммы S формируется единица, а на выходе переноса Р – нуль при наличии единицы на одном из входах A, B или Р-1. При наличии единиц на любых двух из трех входов полного сумматора, на выходе S будет нуль, а на выходе P – единица. При наличии на всех трех входах логических единиц, на обоих выходах сумматора присутствуют единицы. При нулях на всех трех входах выходы также принимают нулевые состояния. Структура, реализующая описанное правило и положенная в основу микросхем сумматоров 155 и 555 серий, приведена на рис. 4.8.

Рис. 4.8.Структурная схема одноразрядного полного сумматора, положенная в основу микросхем ТТЛ-типа.

При суммировании многоразрядных двоичных чисел с помощью одноразрядных сумматоров их необходимо соединить в последовательные структуры. Выходы переноса Р микросхем младших разрядов подключаются к входам переноса Р-1 микросхем старших разрядов. Отдельные разряды слагаемых подаются на входы А и В микросхем соответствующих разрядов, а с их выходов S снимаются разряды результата суммирования. Выход переноса P микросхемы самого старшего разряда является выходом переноса результата суммирования всего n-разрядного числа.

Такой способ наращивания разрядности сумматоров путем последовательного объединения нескольких полных сумматоров меньшей разрядности достаточно прост в схемной реализации, но при этом имеет существенный недостаток – низкое быстродействие. Распространение переноса в таких структурах осуществляется последовательно от микросхемы к микросхеме. Этого недостатка лишенысумматоры с параллельным переносом. Выражение для переноса в старший разряд одноразрядного полного сумматора можно преобразовать к следующему виду

Введем обозначения и , где gi – функция переноса, hi – функция передачи переноса. Тогда

.

В общем случае можно записать

,

где - перенос в самый младший разряд из предыдущего сумматора, если таковой предусмотрен в структуре цифрового устройства. В противном случае =0. Таким образом, сигнал pi можно получить одновременно с появлением всех разрядов аi и вi на входах сумматора, не дожидаясь формирования переноса в отдельных разрядах полных одноразрядных сумматоров. В случае четырехразрядных чисел А и В можно записать

,

,

.

Для построения четырехразрядного сумматора с параллельным переносом необходимо полученные ФАЛ для pi каждого разряда реализовать в каком-либо базисе, например И-НЕ. Далее выходные сигналы pi с каждой части такой комбинационной схемы должны быть поданы на соответствующие входы Р-1 полных одноразрядных сумматоров. Пример такой структуры приведен на рис. 4.9.

Из рисунка видно, что даже для четырехразрядного сумматора требуется достаточно сложная комбинационная схема формирования переноса. Поэтому схемы сумматоров с параллельным переносом реализуют обычно для сложения чисел с разрядностью не более четырех бит.

При необходимости реализации быстродействующих сумматоров для сложения двоичных чисел большей разрядности используют два подхода. Первый заключается в использовании полных сумматоров с параллельным переносом в качестве базовых элементов и объединении их в общую последовательную структуру. Сумматоры, реализованные по такой структуре, называются сумматорами с цепным переносом. Подобная структура не может обладать максимальным быстродействием, но при этом является простой в схемотехнической реализации.

Рис. 4.9. Схема четырехразрядного сумматора с параллельным переносом.

Второй подход также основан на использовании набора сумматоров с параллельным переносом. Но их объединение в общую структуру основано на принципе параллельной передачи переноса. В этом случае требуется дополнительная комбинационная схема, реализующая параллельный перенос между параллельными сумматорами. Сумматоры с такой структурой называются параллельно-параллельными. Они имеют максимальное быстродействие, но их реализация требует дополнительных аппаратных затрат.

 



<== предыдущая лекция | следующая лекция ==>
Репрезентативные системы | Введение


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.108 сек.