Промышленная пыль представляет собой аэродисперсную систему (аэрозоль), в которой дисперсионной средой является воздух, а дисперсной фазой - твердые пылевые частицы. Пыль образуется при многочисленных производственных процессах в разных отраслях народного хозяйства - в промышленности, сельском хозяйстве и на транспорте.Существенное влияние на устойчивость частиц в воздухе оказывает плотность пыли. Чем выше плотность вещества при одной и той же дисперсности, тем быстрее оно оседает из воздуха. Например, пыль вольфрамово-кобальтовых сплавов размером 5 мкм оседает в 5-6 раз быстрее, чем частицы кварца, и в 14 раз - чем пыль угля таких же размеров. С учетом плотности обычно рассчитывается пребывание пыли в воздухе («скорость витания» пыли) определенной дисперсности: в гигиенической практике для установления характеристики пыли и для изучения влияния на организм пыли полидисперсной или избранной дисперсности; в санитарной технике для определения эффективности фильтрующих свойств разных материалов; в теплотехнике - для характеристики пылевидного топлива и т. д.
Промышленную пыль классифицируют по способу образования, химическому составу и размерам пылевых частиц.
По способу образования:
1) аэрозоль дезинтеграции, когда пыль образуется благодаря механическому воздействию на твердое вещество (дробление, стирание);
2) аэрозоль конденсации, образующийся из паров вещества при их охлаждении (электросварочный аэрозоль, пары окиси цинка, железа и др.).
По химическому составу:
1) органическая:
а) растительная (зерновая, мучная, хлопковая и др.);
б) животная (шерстяная, волосяная, кожаная, костяная и др.);
б) металлическая (пыль железа, цинка, свинца и др.);
3) смешанная:
а) минерально-металлическая (смесь пыли железа и соединений кремния; кварцевой и каменноугольной и др.);
б) смесь органической и неорганической (пыль злаков и почвы, хлопковая и песчаная и др.).
По дисперсности:
а) видимая - размер пылевых частиц свыше 10 мкм, быстро выпадает из воздуха;
б) микроскопическая - размер пылинок от 10 до 0,25 мкм, медленно выпадает из воздуха;
в) ультрамикроскопическая - размеры пылевых частиц менее 0,25 мкм, длительно витает в воздухе, подчиняясь законам броуновского движения.
Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.
Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:
1) гравитационное осаждение;
2) инерционное и центробежное пылеулавливание;
3) фильтрация.
Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Степень очистки воздуха в пылеосадочных камерах не превышает 50–60 %. Метод пригоден лишь для предварительной, грубой очистки газов.
Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения. Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей.
Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов, степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30 мкм степень очистки снижается до 80%, а при d = 5 мкм она составляет менее 40%. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей.
Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.
Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. К аппаратам мокрой очистки относятся насадочные и центробежные скрубберы, скрубберы Вентури, форсуночные скрубберы, тарелочные и барботажно-пенные скрубберы.