русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Дифференциальные уравнения первого порядка.


Дата добавления: 2015-01-16; просмотров: 508; Нарушение авторских прав


Дифференциальные уравнения 1-го порядка имеют вид

=0 или

Если уравнение (1) удастся разрешить относительно , то мы получим

- уравнение первого порядка, разрешенное относительно производной.

Будем считать, что функция задана на некотором открытом множестве .

Общим решением дифференциального уравнения (2) называется функция

такая, что:

1) она удовлетворяет уравнению (2) при значениях постоянной , принадлежащих некоторому определенному множеству; (это множество определяется уравнением (2)).

2) какова бы ни была точка , найдется такое значение постоянной , что функция будет удовлетворять условию .

Соотношение вида , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.

Соотношение, получаемое из общего интеграла при конкретном значении постоянной , называется частным интегралом дифференциального уравнения.

Имеет место следующая теорема существования и единственности решения дифференциального уравнения (2).

Теорема 1. Пусть функция определена и непрерывна на открытом множестве , . Тогда через точку проходит по крайне мере одна интегральная кривая. Если функция имеет на непрерывную частную производную по переменной , то существует единственное решение уравнения (2), удовлетворяющее условию .

Условие называют начальным условием. Задачу отыскания решения уравнения (2), удовлетворяющего начальному условию , называют задачей Коши.

Единственность решения задачи Коши надо понимать в том смысле, что если и есть два решения задачи Коши, удовлетворяющие одному и тому же начальному условию , заданные соответственно на интервалах и , то на пересечении этих интервалов.

Не существует общего метода решения дифференциального уравнения первого порядка. Далее мы выделим некоторые типы дифференциальных уравнений, для которых можно дать метод решения.





<== предыдущая лекция | следующая лекция ==>
Основные понятия. | Уравнения с раздельными и разделяющимися переменными .


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.092 сек.