русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Арифметика в дополнительном коде


Дата добавления: 2015-08-14; просмотров: 1050; Нарушение авторских прав


Микропроцессор может использовать числа в форме дополнительного кода, потому что он в состоянии выполнять операции дополнения (инверсии), инкрементирования (добавления 1 к числу) и сложения двоичных чисел. Микропроцессор не приспособлен для прямого вычитания. Он использует сумматоры и для выполнения вычитания оперирует над дополнительным кодом.

Сложим десятичные числа +5 и +3. Рассмотрим процедуру действий в случае одновременного сложения чисел в десятичном и в дополнительном кодах:

1-е число (+5) 0000 0101

+ +



2-е число (+3) 00000011

(+8) 0000 1000

Согласно табл. 2.8 +5 = 0000 0101 в дополнительном коде аналогично +3 = 0000 0011. Тогда числа в дополнительном коде 0000 0101 и 0000 0011 складываются, как обычные двоичные числа, давая сумму 0000 1000 в дополнительном коде, т.е. 0000 1000=+810.

Пусть надо сложить десятичные числа +7 и —3. Согласно табл. 2.8 +7 = 0000 0111 и —3 = 1111 1101 соответственно в дополнительном коде. Они затем складываются, как обычные двоичные числа, и результат 1 0000 0100 получается в дополнительном коде:

1-е число (+7) 0000 0111

+ +



2-е число (-3) 1111 1101

(+4) 1 0000 0100

Пренебречь переполнением.

Старший бит является переполнением 8-разрядного регистра, и им можно пренебречь. Получаем сумму 0000 0100 или +410.

Сложим десятичные числа +3 и —8. Согласно все той же табл. 2.8 +3=0000 0011 и —8 = 1111 1000. Их дополнительные коды 0000 0011 и 1111 1000 складываются, как обычные двоичные числа, что дает 1111 1011 = 510:
1-е число (+3) 0000 0011

+ +



(-8) 1111 1000

2-е число (-5) 1111 1011

Сложим десятичные числа —2 и —5. В дополнительном коде согласно табл. 2.10—2=1111 1110 и—5=1111 1011. Два числа 1111 1110.и 1111 1011 складываются, как обычные десятичные числа, что дает 1 1111 1001:

1-е число (-2) 1111 1110

+ +



2-е число (-5) 1111 1011

(-7) 1 1111 1001

Пренебречь переполнением.

Старший бит результата является переполнением 8-разрядного регистра, и им пренебрегаем. Таким образом, суммой двух чисел 1111 1110 и 1111 1011 в дополнительном коде будет 1111 1001. Согласно табл. 2.10 сумма 1111 1001 = 710.

Вычтем теперь десятичное число +5 из десятичного числа +8. Первое число +8=0000 1000, второе +5=0000 0101. В дополнительный код (инвертировать и добавить 1) должно быть преобразовано число 00000101, что дает 1111 1011. Затем первое число 0000 1000 складывается с дополнительным кодом второго 1111 1011, как с обычным двоичным числом, что дает 1 0000 0011:

1-е число (+8) 0000 1000

— Дополнительный код

2-е число (+5)----------- _ 1111 1011

(+3) 1 0000 0011

Пренебречь переполнением.

Старший бит является переполнением регистра, им пренебрегаем, что дает результат 0000 0011 = +310. Заметим, что второе число было представлено в дополнительном коде, затем сложено с первым. Используя дополнительный код и сумматор, микропроцессор выполняет вычитание.

Вычтем теперь большее десятичное число +6 из десятичного числа +2:

1-е число (+2) _ 0000 0010

- Дополнительный код +

2-е число (+6)=00000110 — 1111 1010

(—4) 1111 1100

Дополнительный код первого числа +2=0000 0010, второе число +6=0000 0110, его дополнительный код (инверсия и добавление 1)—1111 1010. Оба эти кода сложены затем, как обычные двоичные числа, что дает 1111 1100, а согласно табл. 2.10 1111 1100 = 410.



<== предыдущая лекция | следующая лекция ==>
Дополнительный код | Группировка бит


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.