русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Основные характеристики функции


Дата добавления: 2015-08-14; просмотров: 972; Нарушение авторских прав


1. Функция у=ƒ(х), определенная на множестве D, называется четной, если " xÎ D выполняются условия -хєD и ƒ(-х)=ƒ(х); нечетной, если " xєD выполняются условия -хєD и ƒ(-х)=-ƒ(х).

График четной функции симметричен относительно оси Оу, а нечетной — относительно начала координат.

Например, у=х2, у=√(1+х2), у=ln|х| — четные функции; а у=sinx, у=х3 — нечетные функции; у=х-1, у=√x — функции общего вида, т. е. не четные и не нечетные.

2. Пусть функция у=ƒ(х) определена на множестве D и пусть D 1єD. Если для любых значений х 1;x2єD1 аргументов из неравенства x1<x2 вытекает неравенство: ƒ(x 1)<ƒ(х2), то функция называется возрастающей на множестве D 1; f(x1) ≤ ƒ(х2), то функция называется неубывающей на множестве D1; f(x1)>ƒ(х2), то функция называется убывающей на множестве D1; ƒ(х1)≥ƒ(x2), то функция называетсяневозрастающей на множестве D1.

Например, функция, заданная графиком (см. рис. 100), убывает на интервале (-2; 1), не убывает на интервале (1; 5), возрастает на интервале (3; 5).

 

Возрастающие, невозрастающие, убывающие и неубывающие функции на множестве D1 называются монотонными на этом множестве, а возрастающие и убывающие — строго монотонными. Интервалы, в которых функция монотонна, называются интервалами монотонности. На рисунке (выше) функция строго монотонна на (-2; 1) и (3; 5); монотонна на (1;3).

3. Функцию у=ƒ(х), определенную на множестве D, называют ограниченной на этом множестве, если существует такое число М>0, что для всех хєD выполняется неравенство |ƒ(х)|≤М (короткая запись: у=ƒ(х), хєD, называется ограниченной на D, если $М>0: xєD ==>|ƒ(х)|≤М). Отсюда следует, что график ограниченной функции лежит между прямыми у=-М и у=М (см. рис. 101).



 

4. Функция у=ƒ(х), определенная на множестве D, называется периодической на этом множестве, если существует такое число Т>0, что при каждом хєD значение (х+Т)єD и ƒ(х+Т)=ƒ(х). При этом число Т называется периодом функции. Если Т— период функции, то ее периодами будут также числа m•Т, где m=±1;±2,... Так, для у=sinx периодами будут числа ±2p;±4p; ±6p,... Основной период (наименьший положительный) — это период Т=2p. Вообще обычно за основной период берут наименьшее положительное число Т, удовлетворяющее равенству ƒ(х+Т)=ƒ(х).



<== предыдущая лекция | следующая лекция ==>
Числовые функции. График функции. Способы задания функций | Обратная функция


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.