Определение.Базисом линейного пространства V над полем Р называется упорядоченная система
(3.18)
элементов этого пространства, удовлетворяющая следующим условиям:
1) , такие, что
(3.19)
2) система (3.18) линейно независима.
Если система (3.18) удовлетворяет только одному первому условию, то она называется системой образующих линейного пространства V. Таким образом, базис линейного пространства – это его линейно независимая система образующих.
Числа в равенстве (3.19) называются координатами вектора в базисе (3.18), а само равенство (3.19) – разложением вектора по базису (3.18). Таким образом, координаты вектора в данном базисе – это коэффициенты в разложении этого вектора по базису.
Примеры
1. Вспомним, что в пространстве свободных векторов мы назвали базисом любую упорядоченную тройку некомпланарных (т. е. линейно независимых) векторов и показали, что всякий вектор можно по этому базису разложить. Таким образом, мы видим, что понятие базиса в произвольном линейном пространстве – это обобщение понятия базиса в пространстве свободных векторов.
2. Так как , то ( ) – линейно независима. Кроме того, , а значит, система ( ) является и системой образующих и поэтому базисом.
3. . Таким образом, (1, i) – система образующих в C над R, линейная независимость которой доказана в § 2. Следовательно – это и базис.
4.
(3.20)
Тогда
следовательно, (3.20) – система образующих пространства . В § 2 доказано, что эта система линейно независима, значит, она является и базисом линейного пространства .
5. Базисом в пространстве является фундаментальная система решений.
6. ,
(3.21)
Очевидно, поэтому (3.21) – система образующих пространства . Так как эта система ещё и линейно независима (см. § 2), то она является базисом пространства . Этот базис впредь будем называть каноническим.