русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Пусть заданы векторы в прямоугольной системе координат


Дата добавления: 2015-08-06; просмотров: 793; Нарушение авторских прав


тогда

 

 

Скалярное произведение векторов.

 

Определение. Скалярным произведениемвекторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

× = ï ïï ïcosj

 

 

Свойства скалярного произведения:

 

1) × = ï ï2;

2) × = 0, если ^ или = 0 или = 0.

3) × = × ;

4) ×( + ) = × + × ;

5) (m = ×(m ) = m( × );

 

Если рассматривать векторы в декартовой прямоугольной системе координат, то

× = xa xb + ya yb + za zb;

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

;

 

Пример. Найти (5 + 3 )(2 - ), если

10 × - 5 × + 6 × - 3 × = 10 ,

т.к. .

 

Пример. Найти угол между векторами и , если

.

Т.е. = (1, 2, 3), = (6, 4, -2)

× = 6 + 8 – 6 = 8:

.

cosj =

 

Пример. Найти скалярное произведение (3 - 2 )×(5 - 6 ), если

15 × - 18 × - 10 × + 12 × = 15

+ 12×36 = 240 – 336 + 432 = 672 – 336 = 336.

 

Пример. Найти угол между векторами и , если

.

Т.е. = (3, 4, 5), = (4, 5, -3)

× = 12 + 20 - 15 =17 :

.

cosj =

 

Пример. При каком m векторы и перпендикулярны.

 

= (m, 1, 0); = (3, -3, -4)

.

 

Пример. Найти скалярное произведение векторов и , если

( )( ) =

 

= 10 +

 

+ 27 + 51 + 135 + 72 + 252 = 547.

 

 

Векторное произведение векторов.

 

Определение. Векторным произведениемвекторов и называется вектор , удовлетворяющий следующим условиям:

1) , где j - угол между векторами и ,



2) вектор ортогонален векторам и

3) , и образуют правую тройку векторов.

Обозначается: или .

 

 

 
 

 


j

 

Свойства векторного произведения векторов:

 

1) ;

2) , если ïï или = 0 или = 0;

3) (m = ´(m ) = m( ´ );

4) ´( + ) = ´ + ´ ;

5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то

´ =

 

6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .

 

 

Пример. Найти векторное произведение векторов и

.

= (2, 5, 1); = (1, 2, -3)

.

 

 

При использовании компьютерной версии “Курса высшей математики” можно запустить программу, которая может найти скалярное и векторное произведения двух векторов. Для запуска программы дважды щелкните на значке:

 
 

В открывшемся окне программы введите координаты векторов и нажмите Enter. После получения скалярного произведения нажмите Enter еще раз – будет получено векторное произведение.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

 

Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3),

С(0, 1, 0).

(ед2).

 

Пример. Доказать, что векторы , и компланарны.

, т.к. векторы линейно зависимы, то они компланарны.

 

Пример. Найти площадь параллелограмма, построенного на векторах , если

(ед2).

 

Смешанное произведение векторов.

 

Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .

Обозначается или ( , , ).

Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .

 

 

 

 

 

 

Свойствасмешанного произведения:

 

1)Смешанное произведение равно нулю, если:

а)хоть один из векторов равен нулю;

б)два из векторов коллинеарны;

в)векторы компланарны.

2)

3)

4)

5) Объем треугольной пирамиды, образованной векторами , и , равен

6)Если , , то

 

Пример. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости.

Найдем координаты векторов:

Найдем смешанное произведение полученных векторов:

,

Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости.

 

Пример. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2).

 

Найдем координаты векторов:

Объем пирамиды

Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD.

Sосн = (ед2)

Т.к. V = ; (ед)

 

Уравнение поверхности в пространстве.

 

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

 

 

Общее уравнение плоскости.

Определение. Плоскостьюназывается поверхность, вес точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С – координаты вектора -вектор нормали к плоскости.

 

Возможны следующие частные случаи:

 

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

 

 

Уравнение плоскости, проходящей через три точки.

 



<== предыдущая лекция | следующая лекция ==>
Определение. | Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.097 сек.