Среди ЦИП особое место занимают цифровые вольтметры (ЦВ) постоянного тока. В отличие от аналоговых приборов они содержат аналого-цифровой преобразователь (АЦП), в котором выполняются операции квантования по уровню и кодирование, а также устройство цифрового отсчета. Цифровые вольтметры классифицируют по способу преобразования непрерывной величины в дискретную; структурной схеме АЦП; способу уравновешивания.
По способу преобразования различают ЦВ с кодоимпульсным (поразрядным кодированием, взвешиванием), с время- и частотно-импульсными преобразованиями. В ЦВ с кодоимпульсным преобразованием происходит последовательное сравнение значений измеряемой величины с рядом дискретных значений известной величины, изменяющейся по определенному закону. Цифровой вольтметр с кодоимпульсным преобразованием называют еще вольтметром поразрядного кодирования. В ЦВ с время-импульсным преобразованием измеряемая величина Ux преобразуется во временной интервал Δt с последующим заполнением этого интервала импульсами N образцовой частоты (счетными импульсами), которые подсчитываются цифровым счетчиком. В ЦВ с частотно-импульсным преобразованием (интегрирующих) измеряемое напряжение Ux преобразуется в частоту f следования импульсов, которые подсчитываются за определенный интервал времени цифровым счетчиком.
По структурной схеме аналого-цифровых преобразователей цифровые вольтметры делят на вольтметры прямого и уравновешивающего преобразования (см. рис. 2.4). В вольтметрах прямого преобразования отсутствует обратная связь с выхода на вход и непрерывная измеряемая величина непосредственно преобразуется в дискретную. В цепи прохождения сигнала имеется несколько преобразователей. Эти вольтметры отличаются относительно низкой точностью (из-за накопления погрешностей отдельных преобразователей в процессе преобразования), однако могут обеспечить максимально возможное быстродействие. В вольтметрах уравновешивающего преобразования обязательно имеется обратная связь, т. е. входная величина в процессе преобразования уравновешивается выходной. Так как выходной величиной преобразователя является код (цифра), обратный преобразователь называют цифро-аналоговым преобразователем (ЦАП).
Аналого-цифровой преобразователь уравновешивающего преобразования обеспечивает максимально возможную точность за счет использования общей отрицательной обратной связи, но меньшее быстродействие.
По способу уравновешивания ЦВ делят на вольтметры со следящим и развертывающим уравновешиванием.
В вольтметрах со следящим уравновешиванием (рис. 7.3, а) измеряемая величина Ux непрерывно сравнивается с компенсирующей величиной UK. Компенсирующая величина изменяется во времени до тех пор, пока с заданной точностью не будет достигнуто равенство Ux = UK , после чего производится отсчет. В вольтметрах с развертывающим уравновешиванием (рис. 7.3, б) операция сравнения величин измеряемой Ux и компенсирующей UK происходит по определенной наперед заданной программе. Компенсирующее напряжение принудительно изменяется от нуля до максимального значения и прекращает это изменение в момент равенства напряжений, т. е. при UX = UK.
Рис. 7.3. Временные диаграммы, поясняющие
принцип следящего (а) и развертывающего (б)
уравновешивания
Цифровые измерительные приборы являются сложными устройствами, их функциональные узлы выполняются на основе элементов электронной техники (интегральных схем — дешифраторов, ЦАП, АЦП, триггеров, операционных усилителей, аналоговых ключей на диодах, биполярных и полевых транзисторах; логических ключей и др.).
Каждый ЦВ имеет устройство цифрового отсчета, состоящее из дешифраторов и знаковых (цифровых) индикаторов. Дешифраторы являются преобразователями дискретных сигналов, т. е. позволяют получать на выходе нужную комбинацию сигналов при подаче определенной комбинации сигналов на входе. В ЦВ дешифраторы преобразуют двоично-десятичный код в соответствующие напряжения, управляющие цифровыми индикаторами, обеспечивающими визуальную индикацию в десятичном коде (например, код 8—4—2—1 в десятичный код от 0 до 9). Для выполнения этой задачи обычно используют логические схемы И, как наиболее простые и достаточно быстродействующие. Знаковые индикаторы используют для представления результатов измерения в цифровой форме. Конструкция знаковых индикаторов может быть различна. Например, применяют индикаторы с газоразрядными счетными лампами (декатроны) и лампами типа ИН с анодами в виде сеток и катодами, выполненными в форме арабских цифр от 0 до 9 (рис. 7.4); люминесцентные мозаичные индикаторы (рис. 7.5), обеспечивающие яркое и четкое изображение цифр. Они состоят из отдельных элементов мозаики, светящихся при подключении напряжения к соответствующим элементам; мозаичные индикаторы
Рис. 7.4. Цифровая газоразрядная индикаторная
Рис. 7.5. Люминесцентный индикатор
со светоизлучающими диодами (обеспечивают высокую надежность и хорошую совместимость с транзисторными схемами); электронные индикаторы, выполненные на специальных электронно-лучевых трубках; устройство в виде светового табло, состоящее из 10 неоновых ламп (в зависимости от значения измеряемой величины зажигается та или иная лампа и освещает соответствующую цифру).
Для улучшения параметров ЦИП создаются комбинированные структуры с одновременным использованием различных методов преобразования, адаптивные (приспосабливающиеся к параметрам измеряемого сигнала) структуры с автоматической коррекцией, автоматической калибровкой, структуры с устранением избыточной информации, со статистической обработкой информации, термостатирующими устройствами и др., используются элементы, узлы, обладающие улучшенными характеристиками.