русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Примечание


Дата добавления: 2015-07-23; просмотров: 706; Нарушение авторских прав


Безусловно, эта новинка понравится большинству пользователей системы MATLAB 6.0. Однако нельзя не отметить, что статистические данные более чем скупы.

Оценка погрешности аппроксимации

Средства обработки данных из графического окна позволяют строить столбцовый или линейчатый график погрешностей в узловых точках и наносить на эти графики норму погрешности. Норма дает статистическую оценку среднеквадрати-ческой погрешности. Чем она меньше, тем точнее аппроксимация. Для вывода графика погрешности надо установить птичку у параметра Plot residuals (График погрешностей) и в меню ниже этого параметра выбрать тип графика.

Таким образом, интерфейс графического окна позволяет выполнять эффективную обработку данных наиболее распространенными способами.

Сплайновая интерполяция в графическом окне

Попытка аппроксимации полиномом 8-й степени не дает положительного результата — кривая проходит внутри облака точек, совершенно не интерполируя это облако.

Однако если применить сплайновую интерполяцию, то картина кардинально меняется. На этот раз кусочная линия интерполяции прекрасно проходит через все точки и поразительно напоминает синусоиду. Даже ее пики со значениями 1 и -1 воспроизводятся удивительно точно, причем и в случаях, когда на них не попадают узловые точки.

Причина столь великолепного результата кроется в уже отмеченных ранее особенностях сплайновой интерполяции - она выполняется по трем ближайшим

точкам, причем эти тройки точек постепенно перемещаются от начала точечного графика функции к ее концу. Кроме того, непрерывность первой и второй производных при сплайновой интерполяции делает кривую очень плавной, что характерно и для первичной функции — синусоиды. Так что данный пример просто является удачным случаем применения сплайновой интерполяции.

Рис. 17.15.Пример сплайновой интерполяции в графическом окне



Мы не можем практически называть этот подход полноценной аппроксимацией, поскольку в данном случае нет единого выражения для аппроксимирующей функции. На каждом отрезке приближения используется кубический полином с новыми коэффициентами. Поэтому и вывода аппроксимирующей функции в поле графика не предусмотрено.

Эрмитовая многоинтервальная интерполяция

MATLAB 6.0 дает возможность в графическом окне использовать еще один вид многоинтервальной интерполяции на основе полиномов третьей степени Эрмита. Техника интерполяции здесь таже, что и в случае сплайновой интерполяции, (рис. 17.16).

Полиномы Эрмита имеют более гибкие линии, чем сплайны. Они точнее следуют за отдельными изгибами исходной зависимости. Это хорошо показывает рис. 17.16.

Рис. 17.16.Пример эрмитовой интерполяции синусойды в графическом окне

Сравнение сплайновой и эрмитовой интерполяции

Оба вида интерполяции в данном случае дают превосходные результаты, поскольку представляемая ими кусочная функция практически почти точно проходит через все заданные точки. Однако если учесть, что эти точки принадлежат синусоиде, то в данном случае результаты сплайновой интерполяции оказываются явно лучшими. Особенно это характерно для экстремальных точек.

Поскольку в этих двух методах интерполяции кривая интерполяции проходит точно через узловые точки, в этих точках погрешности интерполяции равны нулю. Вы можете проверить это задав вывод графика погрешности. В целом, можно заключить, что сплайновая интерполяция лучше, когда нужно эффективное сглаживание быстро меняющихся от точки к точке данных и когда исходная зависимость описывается линиями, которые мы наблюдаем при построении их с помощью гибкой линейки. Эрмитова интерполяция лучше отслеживает быстрые изменения исходных данных, но имеет худшие сглаживающие свойства.

Все это говорит о том, что надо внимательно подходить к оценке приемлемости того или иного вида интерполяции (или аппроксимации) для конкретных типов исходных данных.



<== предыдущая лекция | следующая лекция ==>
Обработка данных в графическом окне | Основные функции символьных данных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.