В этом разделе рассмотрены базовые средства для проведения операций свертки и фильтрации сигналов на базе алгоритмов быстрого преобразования Фурье. Многие дополнительные операции, относящиеся к этой области обработки сигналов, можно найти в пакете прикладных программ Signal Processing Toolbox.
Для двух векторов х и у с длиной тип определена операция свертки:
В ее результате получается вектор z с длиной (т+п- 1). Для осуществления свертки используется функция conv(x.y).
Обратная свертке функция определена как [q,r]=deconv(z,x). Она фактически определяет импульсную характеристику фильтра. Если z=conv(x,y), то q=y и г=0. Если х и у — векторы с коэффициентами полиномов, то свертка эквивалентна перемножению полиномов, а обратная операция — их делению. При этом вектор q возвращает частное (фактор), а вектор r - остаток от деления полиномов.
Функция свертки двумерных массивов
Для двумерных массивов также существует функция свертки: Z=conv2(X.Y) и Z=conv2(X,Y. 'option').
Для двумерных массивов X и Y с размером m хп и тхп соответственно результат двумерной свертки порождает массив размера (т +т -1)х(m +п -1). Во второй форме функции параметр option может иметь следующие значения:
· ' full' — полноразмерная свертка (используется по умолчанию);
· 'same' — центральная часть размера тхп ;
· 'valid' — центральная часть размера (т-т +1)х(п-п +1), еслн (тхп х )>(тхп ).
Возможность изменить решение или трактовку данных с помощью параметров является свойством ряда функций системы MATLAB. Позже мы столкнемся с этой возможностью еще не раз.
Дискретная одномерная фильтрация
MATLAB может использоваться для моделирования работы цифровых фильтров. Для обеспечения дискретной одномерной фильтрации используется функция filter в следующих формах записи:
· filter(B.A.X) — фильтрует одномерный массив данных X, используя дискретный фильтр, описываемый следующим конечноразностным уравнением:
Если а(1) не равно 1, то коэффициенты уравнения нормализуются относительно а (1). Когда X — матрица, функция filten оперирует столбцами X. Возможна фильтрация многомерного (размерности N) массива.
· [Y. Zf]=fi 1 ten(В, A. X, Zi) — выполняет фильтрацию с учетом ненулевого начального состояния фильтра Zi; возвращает помимо выходного сигнала Y конечное состояние фильтра Zf;
· filter(B.A.X,[ ].dim) или fi!ter(B.A,X.Zi .dim) — работает в направлении размерности dim
Рассмотрим типовой пример фильтрации гармонического сигнала на фоне других сигналов — файл с именем filtdem.m из пакета расширения Signal Processing Toolbox.
Следующий кадр иллюстрирует конструирование фильтра с достаточно плоской вершиной амплитудно-частотной характеристики (АЧХ) и полосой частот, обеспечивающего выделение сигнала с частотой 15 Гц и подавление сигналов с частотами 5 и 30 Гц. Для формирования полосы пропускания фильтра используется функция el 11 р, а для построения АЧХ — функция freqz (обе — из пакета Signal Processing Toolbox). Это позволяет построить график АЧХ созданного фильтра.
Следующий кадр примера иллюстрирует эффективность выделения сигнала заданной частоты (15 Гц) с помощью операции фильтрации — функции filter, описанной выше. Можно заметить два обстоятельства — полученный стационарный сигнал практически синусоидален, что свидетельствует о высокой степени фильтрации побочных сигналов. Однако нарастание сигнала во времени идет достаточно медленно и занимает несколько периодов частоты полезного сигнала. Характер нарастания сигнала во времени определяется переходной характеристикой фильтра.
Заключительный кадр показывает спектр исходного сигнала и спектр сигнала на выходе фильтра (он показан линиями другого цвета, что, к сожалению, не видно на черно-белом рисунке). Для построения спектров используется прямое преобразование Фурье — функция fft.
Этот пример наглядно иллюстрирует технику фильтрации. Рекомендуется просмотреть дополнительные примеры, которые есть в разделе Demos системы применительно к пакету расширения Signal Processing (если этот пакет установлен).
Двумерная фильтрация
Для осуществления двумерной фильтрации служит функция filter2:
· filter2(B.X) — фильтрует данные в двумерном массиве X, используя дискретный фильтр, описанный матрицей В. Результат Y имеет те же размеры, что и X;
· filter2(B,X, 'option') — выполняет то же, но с опцией, влияющей на размер массива Y:
o 'same' — size(Y)=size(X) (действует по умолчанию);
o 'valid' — size(Y) < size(X), центральная часть двумерной свертки, при вычислении которой не приходится дополнять массивы нулями;
o 'full' — size(Y) > size(X), полная двумерная свертка.
Функция коррекции фазовых углов unwrap
Фазовые углы одномерных массивов испытывают разрывы при переходе через значения, кратные р. Функции unwrap(P) и unwrap(P,cutoff) устраняют этот недостаток одномерного массива Р, дополняя значения углов в точках разрыва значениями ±2р. Если Р — двумерный массив, то данная функция применяется к столбцам. Параметр cutoff (по умолчанию равный р) позволят назначить любой критический угол в точках разрыва. Функция используется при построении фазочастотных характеристик (ФЧХ) фильтров. Поскольку они строятся редко, оставим за читателем изучение практического применения данной функции.