Отношение R = {(a ,b): a+1=b или b+1=a}.
Это отношение антирефлексивно, симмитрично, не транзитивно.
R
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| R-1
|
|
|
|
|
|
|
| 0
| 1
| 0
| 0
| 0
| 0
|
|
|
| 1
| 0
| 1
| 1
| 1
| 1
|
|
|
| 0
| 1
| 0
| 0
| 0
| 0
|
| 1
| 0
| 1
| 0
| 0
| 0
|
|
|
| 0
| 1
| 0
| 1
| 1
| 1
|
|
|
| 1
| 0
| 1
| 0
| 0
| 0
|
| 0
| 1
| 0
| 1
| 0
| 0
|
|
|
| 1
| 0
| 1
| 0
| 1
| 1
|
|
|
| 0
| 1
| 0
| 1
| 0
| 0
|
| 0
| 0
| 1
| 0
| 1
| 0
|
|
|
| 1
| 1
| 0
| 1
| 0
| 1
|
|
|
| 0
| 0
| 1
| 0
| 1
| 0
|
| 0
| 0
| 0
| 1
| 0
| 1
|
|
|
| 1
| 1
| 1
| 0
| 1
| 0
|
|
|
| 0
| 0
| 0
| 1
| 0
| 1
|
| 0
| 0
| 0
| 0
| 1
| 0
|
|
|
| 1
| 1
| 1
| 1
| 0
| 1
|
|
|
| 0
| 0
| 0
| 0
| 1
| 0
|
R(2)
|
|
|
|
|
|
|
|
| R0
|
|
|
|
|
|
|
|
| R*
|
|
|
|
|
|
|
| 1
| 0
| 1
| 0
| 0
| 0
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
| 0
| 1
| 0
| 1
| 0
| 0
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
| 1
| 0
| 1
| 0
| 1
| 0
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
| 0
| 1
| 0
| 1
| 0
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
| 0
| 0
| 1
| 0
| 1
| 0
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
| 0
| 0
| 0
| 1
| 0
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
Пример:
Пусть на множестве М = {1, 2, 3, 4, 5, 6} определено отношение R – “быть меньше ”. Задать матрицами отношение: R,
, R-1, R(2),R0, R*.
R
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| R-1
|
|
|
|
|
|
|
| 0
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 0
| 0
| 0
| 0
| 0
|
|
|
| 0
| 0
| 0
| 0
| 0
| 0
|
| 0
| 0
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 0
| 0
| 0
| 0
|
|
|
| 1
| 0
| 0
| 0
| 0
| 0
|
| 0
| 0
| 0
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 0
| 0
| 0
|
|
|
| 1
| 1
| 0
| 0
| 0
| 0
|
| 0
| 0
| 0
| 0
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 0
| 0
|
|
|
| 1
| 1
| 1
| 0
| 0
| 0
|
| 0
| 0
| 0
| 0
| 0
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 0
|
|
|
| 1
| 1
| 1
| 1
| 0
| 0
|
| 0
| 0
| 0
| 0
| 0
| 0
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 0
|
R(2)
|
|
|
|
|
|
|
|
| R0
|
|
|
|
|
|
|
|
| R*
|
|
|
|
|
|
|
| 0
| 0
| 1
| 1
| 1
| 1
|
|
|
| 0
| 1
| 1
| 1
| 1
| 1
|
|
|
| 1
| 1
| 1
| 1
| 1
| 1
|
| 0
| 0
| 0
| 1
| 1
| 1
|
|
|
| 0
| 0
| 1
| 1
| 1
| 1
|
|
|
| 0
| 1
| 1
| 1
| 1
| 1
|
| 0
| 0
| 0
| 0
| 1
| 1
|
|
|
| 0
| 0
| 0
| 1
| 1
| 1
|
|
|
| 0
| 0
| 1
| 1
| 1
| 1
|
| 0
| 0
| 0
| 0
| 0
| 1
|
|
|
| 0
| 0
| 0
| 0
| 1
| 1
|
|
|
| 0
| 0
| 0
| 1
| 1
| 1
|
| 0
| 0
| 0
| 0
| 0
| 0
|
|
|
| 0
| 0
| 0
| 0
| 0
| 1
|
|
|
| 0
| 0
| 0
| 0
| 1
| 1
|
| 0
| 0
| 0
| 0
| 0
| 0
|
|
|
| 0
| 0
| 0
| 0
| 0
| 0
|
|
|
| 0
| 0
| 0
| 0
| 0
| 1
|