Фулере́ни або бакиболи — одна з кількох алотропних модифікацій Карбону. Найвідоміший фулерен — молекула C60, яка має ідеальну форму футбольного м'яча.
Відкриті в 1985 Робертом Керлом, Гарольдом Крото й Річардом Смолі, ці молекули, що складаються тільки з атомів Карбону, отримали свою назву на честь Річарда Бакмінстера Фулера — архітектора, що прославився побудовою ажурних куполів. Першовідкривачі отримали Нобелівську премію з хімії в 1996 році.
Природні фулерени можна знайти в сажі. Кристалічна форма фулеренів називається фулеритом.
Історія відкриття. Фізичні та хімічні властивості [ред.]
Термін "Фулерен" застосовують до широкого класу сполук із мінімально можливою будовою у 60 атомів вуглецю, що поєднані ковалентним зв'язком у сферичну молекулу, де кожен атом вуглецю поєднаний із трьома іншими, утворюючи п'ятикутники та шестикутники на поверхнях. Найбільша молекула фулерену складається із 560 атомів вуглецю.[Джерело?] Найбільш вивченою молекулою фулерену є молекула С60. С60 найменший фулерен, що відповідає правилу ізольованого пентагону і тому він є найменшим стійким фулереном.[1] Вміст С60 найвищий у зазвичай експериментально отримуваній суміші фулеренів, хоча С60 термодинамічно є найменш стабільним серед стійких фулеренів. Його ентальпія утворення 8,66 ккал/атом більша за ентальпію утворення, наприклад, С70 на 0,34 ккал/атом[2]. Найстійкішою алотропною модифікацією Карбону за стандартних умов є графіт з ентальпією утворення 0,00 ккал/атом. Тобто, С60 є кінетично контрольованим продуктом в реакції утворення фулеренів.
Історія відкриття фулерену незвичайна. У 1973 радянські вчені Д.А. Бочвар і Е. Н. Гальперін опублікували результати квантово-хімічних розрахунків з яких випливало, що повинна існувати стійка форма вуглецю, яка містить у молекулі 60 вуглецевих атомів і не має жодних замісників. У тій же статті була запропонована форма такої гіпотетичної молекули. Висновки цієї роботи здавалися в той час зовсім фантастичними. Ніхто не міг собі уявити, що така молекула може існувати, і, тим більше — не уявлявся спосіб її одержання. Ця теоретична робота трохи випередила свій час і була спочатку просто забута.
У 1980-х астрофізичні дослідження дозволили встановити, що в спектрах деяких зірок, так званих «червоних гігантах», виявлені смуги, що вказують на існування чисто вуглецевих молекул різного розміру.
У 1985 англійські вчені Гарольд Крото і Річард Смоллі почали проводити дослідження вже в «земних» умовах. Вони вивчали мас-спектри пари графіту, отриманих під ударом лазерного променя, і виявили, що в спектрах є два сигнали, інтенсивність яких набагато вища, ніж всіх інших. Сигнали відповідали масам 720 і 840, що вказувало на існування великих агрегатів з вуглецевих атомів — С60 і С70. Мас-спектри дозволяють установити лише молекулярну масу частинки і не більш того, однак цього виявилося досить, щоб фантазія вчених запрацювала. У підсумку була запропонована структура багатогранника, зібраного з п'яти — і шестикутників. Це було точне повторення структури, запропонованої 12 років тому Бочваром і Гальперном.
Свою назву фулерени отримали за прізвищем архітектора Бакмінстера Фулера, котрий сконструював купол і павільйон США на виставці у Монреалі у 1967 році у вигляді сполучених п'ятикутників та шестикутників. Однак заради справедливості необхідно відмітити, що подібна форма є серед популярних форм Архімеда. Окрім того, збережена дерев'яна модель такої форми, яку виконав Леонардо да Вінчі, а Ейлер отримав формулу для різних поверхонь:
Nn • 6 — n = 12 s
де n — розмірність, Nn — кількість багатокутників розмірності n, s — характеристика кривизни поверхні. Так як s = 1 для кулі та s = 0 для площини, то із формули (1) випливає, що для утворення сферичної поверхні необхідно 12 п'ятикутників n = 5 та довільна кількість шестикутників (n = 6).
Класичним вважається фулерен, що складається з 60 атомів Карбону (С60). У його молекулі атоми Карбону утворюють 12 п'ятичленних та 20 шестичленних циклів, причому п'ятичленні цикли повністю розмежовані шестичлнними і не мають спільних атомів.
Якийсь час фулерен був доступний лише в кількостях, достатніх для спектральних досліджень, але не хімічних. Одержати фулерен у помітних кількостях вдалося Д.Хаффману і В.Кретчмеру, що провели випарювання графіту за допомогою електричної дуги в атмосфері гелію. Сажа, що утворюється в цьому процесі, була проекстрагована бензолом. З розчину виділили сполуки, що мають суміш С60 і С70. Друга сполука утворюється в кількостях, приблизно в шість разів менших, ніж перша, і тому основна маса досліджень проводиться з С60. Описаний спосіб одержання фулерену з тими чи іншими технологічними варіаціями на сьогодні все ще єдиний. Вміст фулеренів у сажі, яка утворюється, досягає 44 %. Існують схеми синтезу фулерену. засобами органічної хімії, але вони поки що не реалізовані. У каталогах хімічних реактивів речовина С60 має назву бакмінстерфулерен, хіміки частіше називають його просто фулереном. Є й інша образна назва — футболен. Подібність з покришкою футбольного м'яча очевидна. Існує ще гібрид обох назв — бакібол. Відкриття фулерену буквально приголомшило хіміків. Здавалося, що про елементарний вуглець відомо практично усе. Від інших алотропних модифікацій вуглецю фулерен відрізняється насамперед тим, що це індивідуальні кінцеві молекули, що мають замкнуту форму. Фулерен на відміну від відомих раніше трьох форм вуглецю розчинний в органічних розчинниках (бензол, гексан, сірковуглець). З розчинів фулерен кристалізується у виді дрібних темно-коричневих кристалів. Для рентгеноструктурного аналізу вони не придатні, тому що через сферичну форму молекул їхня структура невпорядкована. Побачити молекулу фулерена «своїми очима» вдалося далеко не відразу, лише після того, як був отриманий продукт взаємодії фулерена з тетроксидом осмію OsO4 у присутності третбутилпіридину, який добре кристалізується.
Чотиривалентність вуглецю у формулі фулерена повністю виконується. Правильніше зображувати фулерен у вигляді каркасу з простими короткими зв'язками, що чергуються, але частіше застосовують спрощене зображення, де каркас складається з однарних рисок. Ще одна незвичайна структурна особливість фулерену полягає в тому, що його молекула має внутрішню порожнину, діаметр якої приблизно 0,5 нм. Зовнішній діаметр самої молекули 0,71 нм. Внутрішній діаметр, природно, менше зовнішнього, оскільки атоми вуглецю і їхні електронні оболонки теж мають певний розмір.
Фулерен — винятково стійка сполука. У кристалічному вигляді він не реагує з киснем повітря, стійкий до дії кислот і лугів, не плавиться до температури 360 °С. Хімічні властивості знаходяться в повній згоді зі згаданими вище структурними особливостями — фулерен не вступає в реакції, характерні для ароматичних сполук. Неможливі реакції заміщення, тому що в атомів вуглецю немає ніяких бічних замісників. Достатня кількість ізольованих кратних зв'язків дозволяє вважати фулерен поліолефіновою системою. Для нього найтиповішим є приєднання по кратному зв'язку.
Фулерен є яскраво вираженим акцептором електронів і при дії сильних відновників (лужні метали) може приймати до шести електронів, утворюючи аніон С606-. Крім того, він легко приєднує нуклеофіли і вільні радикали. При відновленні лужними металами (наприклад, цезієм чи рубідієм) відбувається перенесення електрона від атома металу до фулерену. Сполуки, що утворюються, мають низькотемпературну надпровідність, критична температура появи надпровідності 33К.
Родинні сполуки й аналоги фулерена [ред.]
Для фулерена є ще одна можливість утворювати сполуки, використовуючи внутрішню порожнину вуглецевої кулі, діаметр якої достатній, щоб у ній міг розміститися атом металу чи невелика молекула. Таким чином, відкривається шлях до одержання хімічних сполук зовсім нового типу, де атом механічно утримується усередині замкненого середовища.
Спосіб введення атома металу у внутрішню порожнину фулерену практично не відрізняється від способу одержання самого фулерену. Графіт перед випаровуванням просочують солями металів. У продуктах реакції виявлені сполуки складу С60La, С60Y, С60U). Усередину заздалегідь сформованої порожнини крізь стінку удалося поки ввести лише атом гелію (завдяки його невеликим розмірам) шляхом бомбардування фулерена іонами гелію в газовій фазі.
20-fullerene (dodecahedral graph)
26-fullerene graph
60-fullerene (truncated icosahedral graph)
70-fullerene graph
Родинні сполуки й аналоги фулерена поки що нечисленні. Найвідоміший аналог — С70 — був отриманий практично одночасно з С60. Одержання його в чистому вигляді пов'язане з великими труднощами, тому він вивчений менше. За формою він близький до еліпсоїда і через злегка витягнуту форму одержав назву «регбібол». Таким чином, продовжений стиль назв фулерена С60 (футболен, бакібол). Розміри осей еліпсоїда 0,788 і 0,682 нм. Нагадаємо, що у фулерена С60 усі вершини еквівалентні, а зв'язки між ними тільки двох типів (прості і подвійні). У регбіболі є вершини п'яти типів, наприклад вершини, де сходиться три шестикутні грані. Довжина зв'язку має вісім значень в інтервалі 0,138-0,146 нм. Таким чином, розставити однозначно в структурі подвійні і прості зв'язки неможливо. На подовжених кінцях яйцеподібної молекули знаходяться дві п'ятикутні грані. До них примикають найбільше реакційноздатні зв'язки, за властивостями близькі до кратних. Особливу групу утворюють так звані фулеренові трубки — тубулени, які представляють собою порожні циліндричні утворення, зібрані із шестикутників і які мають, як правило, на кінці сферичну кришку, що включає п'ятикутні грані.
За кімнатної температури фулерени С60 і С70 не реагують із такими молекулами: оксид азоту, кисень, оксид сірки. Попри це було зафіксовано ряд нових хімічних реакцій із фулеренами.
Отримано і охарактеризовано найпростіший дигідрований фулерен із двома воднями С60Н2. Синтезовані галогенопохідні фулеренів. Прямим приєднанням флуору отримана серія С60Fх та С70Fy де х менше або дорівнює 48, а у менше або дорівнює 56. Проведене хлорування та бромування фулеренів. Хлорування проводиться у нагрітих до 250°С трубках. Як правило, приєднується 24 атоми хлору. За температури 400°С поліхлорфулерени дехлоруються у вихідний фулерен.
Таким чином, можна констатувати, що відкриття фулерену знаменувало появу класу сполук, які являють собою нову незвичайну форму елементного вуглецю. Це замкнуті каркаси, протяжні циліндричні чи багатошарові утворення, здатні до хімічних перетворень як на зовнішній поверхні, так і у внутрішній порожнині.
Гідратований фулерен (HyFn) [ред.]
водний розчин C60HyFn
Гідратований фулерен С60 — C60HyFn — це міцний, високогідрофільний супрамолекулярний комплекс, що складається з молекули фулерена С60, ув'язненої у першу гідратну оболонку, яка містить 24 молекули води: C60@(H2O)24. Гідратна оболонка утворюється внаслідок донорно-акцепторної взаємодії неподілених пар електронів кисню молекул води з електрон-акцепторними центрами на поверхні фулерена. При цьому, молекули води, орієнтовані поблизу поверхні фулерена зв'язані між собою об'ємною сіткою водневих зв'язків. Розмір C60HyFn - 1,6-1,8 нм. У той же час, максимальна концентрація С60, у вигляді C60HyFn, яку вдалося створити у воді, еквівалентна 4 мг/мл[3][4][5][6]. Фотографія водного розчину С60HyFn з концентрацією С60 0,22 мг/мл праворуч.
Багатошарові фулерени [ред.]
У 1999 році японсько-російському колективу з Міжнародного центра досліджень матеріалів (Японія) вдалося знайти багатошарові фулерени. Вони були отримані із сажі, шляхом лазерного піролізу бензену. Сажу протягом години випалювали за температури 3000°С у атмосфері аргону. Після прожарювання у вакуумі за температури 1600°С була отримана плівка осаду, яка складалася з молекул фулерену діаметром 8,1 Å та 11,9 Å, що відповідає С80 та С180. Як видно з фотографії, отриманої за допомогою електронного мікроскопа, є молекули, що складаються з кількох шарів. На фото можна побачити два їх різновиди: подвійну сферу діаметром 14 Å та потрійну кулю діаметром 20 Å. Це, на думку авторів досліду, перше спостереження вкладених один в одного фулеренів, т. зв. оніонів (англ. onion). Хоча останнє твердження і суперечливе, оскільки ще в 1980 році Ііджіма спостерігав за допомогою електронної мікроскопії високого розрішення оніоні утворення.[7] Якщо розрахувати діаметри молекул, то виходить, що в першому випадку це С60 всередині С240, а в другому — С80 та С240, вкладені, як матрьошки, в С560. Такі багатошарові фулерени — новий вид вуглецевих кластерів.
Вплив на живі організми [ред.]
Незважаючи на те, що фулерен був відкритий більше 25 років тому, його вплив на живі організми досі залишається невідомим. Хоча теоретично показано, що фулерени не є токсичними[8], їхня безпечність для людей все ще широко обговорюється. Однак, у квітні 2012 року група французьких вчених[9] опублікувала статтю з результатами досліджень на щурах. У статті вказується, що щурі, яким щодня давали певну дозу фулерену С60 з оливковою олією, прожили вдвічі довше, ніж щурі, які фулерену не вживали. Вважається, що такий ефект спостерігається через те, що фулерени поглинають вільні радикали, які сприяють старінню[6]. Однак ще невідомо чи будуть вони мати такий же ефект у людей.
Вуглецеві нанотрубки — протяжні циліндричні структури діаметром від одного до декількох десятків нанометрів і завдовжки до декількох мікрон складаються з однієї або декількох згорнутих в трубку гексагональних графітових площин (графенів) і закінчуються зазвичай півсферичною головкою.
Модель вуглецевої нанотрубки. За допомогою обертання показано її трьохвимірну структуру.
НАНОТРУБКИ ВУГЛЕЦЮ – трубчасті наноутворення вуглецю. Виявлені у 1991 р. Бувають одно- і багатошарові. Відповідно діаметр цих трубок знаходиться у межах 0,4 – 500 нм, а довжина від 1 мкм до декількох десятків мікрометрів (при синтезі довгих волокон – і до десятків см). Утворюються при розкладанні вуглецьвмісних газів (СН4, С2Н4, С2Н2, СО, парів С6Н6 і т.д.) на каталітично активних поверхнях металів (Fe, Co, Ni тощо) при т-рах 300 – 1500 °С. Н.в. можуть набувати найрізноманітніших форм – від прямолінійних до скручених волокон (у т.ч. спіралей). Головна особливість цих вуглецевих наноструктур (як і фулеренів) – їх каркасна форма. Виявлені природні форми Н.в. (напр., у шунгітах), а також можуть продукуватися штучно. При цьому встановлено, що природні Н.в. утворюються при обробці вуглецьвмісних біологічних тканин особливим грибком – карбоксиметилцелюлофагом, який виявлений, зокрема, в карстових печерах Нової Зеландії і в Карелії (родовище шунгіту).
Структура "крісло" (armchair) - (n, n)
Структура з вигнутим хіральним вектором (трансляційний вектор залишається прямим)
Графенова нанострічка
Структура з вигнутим хіральним вектором (трансляційний вектор залишається прямим)
Структура "зигзаг" (zigzag) - (n,0)
Хіральна структура в загальному випадку (n, m)
Параметри n та m can можна порахувати на кінці трубки
Графенова нанострічка
Основні властивості [ред.]
Міцнісні властивості. Н.в. дуже міцні як на розтяг, так і на згинання – модуль пружності вздовж осі трубки становить 7000 ГПа, тоді як для легованої сталі і найпружнішого металу ітрію відповідно 200 і 520 ГПа.
Адсорбція газів нанотрубками може відбуватися на зовнішніх і внутрішніх поверхнях, а також у міжтрубному просторі. Так, експериментальне вивчення адсорбції азоту при температурі 77 К на багатошарових трубках із мезопорами завширшки 4,0±0,8 нм показало, що на внутрішній поверхні адсорбується у 5 разів більше частинок, ніж на зовнішній, а ізотерми цих процесів мають різний вигляд. Адсорбція у мезопорах загалом відбувається за класичною теорією капілярної конденсації, а обчислений діаметр пор дорівнює 4,5 нм. Певна специфічність процесу пов’язана із тим, що трубки відкриті тільки з одного кінця. Зростки одношарових нанотрубок добре адсорбують азот. Вихідні очищені трубки мали внутрішню питому поверхню 233 м²/г, зовнішню – 143 м²/г. Обробка нанотрубок соляною та азотною кислотами збільшувала сумарну питому поверхню і збільшувала адсорбційну ємність за бензолом та метанолом.
Електропровідність вуглецевих нанотрубок є ключовим параметром цих об’єктів, від неї залежить їх подальше використання з метою мініатюризації приладів мікроелектроніки. Як показують результати чотириконтактних вимірювань температурних залежностей питомого опору плівки нанотрубок, виконаних в діапазоні температур 0,03 < Т < 300 К, величина опору, виміряного у напрямку, що збігається з напрямком орієнтації нанотурбок Rпар, знаходиться у діапазоні від 1 до 0,08 Ом. При цьому характер температурної залежності опору наближений до залежності Т1/2. Аналогічною функцією описується температурна залежність опору Rпар, що вимірюється у поперечному напрямку. Анізотропія опору Rперп/Rпар наближена до 8 і практично не залежить від температури. При температурах нижче 0,1 К обидві залежності виходять на насичення. Як видно із порівняння результатів вимірювань із наведеними нижче даними, що отримані для індивідуальних нанотрубок, значення питомого опору плівки нанотрубок суттєво перевищує величину, яка характеризує індивідуальну нанотрубку, питомий опір якої, у свою чергу, близький до відповідного значення для графіту. Звідси випливає, що питомий опір плівки нанотрубок визначається не стільки самими нанотрубками, скільки точками контакту між окремими нанотрубками, так що за перенос заряду відповідає стрибковий механізм. Наявність анізотропії вказує на те, що число точок контакту на одиницю довжини в повздовжньому напрямку значно менше, ніж у поперечному. Падіння опору із ростом температури вказує на активаційний характер стрибкового переносу заряду. При дуже низьких температурах головним механізмом провідності залишається квантове підбар’єрне тунелювання, що обмежує опір. Обробка експериментальних даних дозволила оцінити висоту потенціального бар’єру (10 меВ) та довжину стрибка (10 нм).
Одна з помітних властивостей нанотрубок – чітко виражена залежність електропровідності від магнітного поля. При цьому у більшості дослідів спостерігається ріст провідності із збільшенням магнітного поля, що відповідає результатам модельних передбачень, згідно з якими магнітне поле, лінії якого орієнтуються перпендикулярно до осі зразка, призводить до утворення рівня Ландау у точці перетину валентної зони та зони провідності. Щільність станів на рівні Фермі зростає, внаслідок чого провідність збільшується. У рамках даної моделі передбачається, що за низьких температур магнітоопір не залежить від температури, а за температур, що більші або наближені до ширини рівня Ландау, він зменшується із температурою. Ця залежність корелює із результатами вимірювань електричного опору джгутів багатошарових трубок діаметром близько 50 нм. Прояв властивостей напівпровідника або металу в Н.в. також залежить від їх геометричних параметрів і виду каталізатора.
Класифікація нанотрубок [ред.]
Для отримання нанотрубки (n, m), графітову площину треба розрізати по напрямах пунктирних ліній і скрутити уздовж напряму вектора R.
Як випливає з визначення, основна класифікація нанотрубок проводиться за способом згортання графітової площини. Цей спосіб згортання визначається двома числами n і m, які задають розкладання напряму згортання на вектора трансляції графітових граток. Це проілюстровано на малюнку.
За значенням параметрів (n, m) розрізняють:
прямі (ахіральні) нанотрубки
«крісло» (armchair) n=m
зигзагоподібні (zigzag) m=0 або n=0
спіральні (хіральні) нанотрубки
Як неважко здогадатися, при дзеркальному відображенні (n, m) нанотрубка переходить в (m, n) нанотрубку, тому, трубка загального вигляду дзеркально несиметрична. Прямі ж нанотрубки або переходять в себе при дзеркальному відображенні (конфігурація «крісло»), або переходять в себе з точністю до повороту.
Розрізняють металеві і напівпровідникові нанотрубки. Металеві нанотрубки проводять електричний струм навіть при абсолютному нулі температур, тоді як провідність напівпровідникових трубок рівна нулю при абсолютному нулі і зростає при підвищенні температури. Технічно кажучи у напівпровідникових трубок існує заборонена зона. Трубка виявляється металевою, якщо n-m ділиться на 3. Зокрема, металевими є всі трубки типу «крісло». Детальніше див. розділ про електронні властивості нанотрубок.
Одношарові і багатошарові нанотрубки [ред.]
Сказане відноситься до простих одношарових нанотрубок. У реальних умовах трубки нерідко виходять багатошаровими, тобто є декількома одношаровими нанотрубками, вкладені одна в іншу (так звані "російські матрьошки").
Одношарові та багатошарові коаксіальні нанотрубки утворюються в результаті згортання смуг плоских атомних сіток графіту у безшовні циліндри. Внутрішній діаметр вуглецевих нанотрубок може змінюватися від 0,4 до кількох нанометрів, а у внутрішній об’єм можуть входити інші сполуки. Одношарові трубки мають менше дефектів, а після високотемпературного випалення у інертній атмосфері можна отримати і бездефектні трубки. Тип будови трубки впливає на її хімічні, електронні та механічні властивості. Індивідуальні трубки агрегують із утворенням різних типів зростків, що мають щілини.
Багатошарові нанотрубки відрізняються від одношарових ширшим набором форм та конфігурацій. Різні види будови виявляються як у повздовжньому, так і в поперечному напрямі. Будова типу «російської матрьошки» (Russian dolls) являє собою сукупність коаксіально вкладених одна в одну одношарових циліндричних нанотрубок. Інший різновид цієї будови, являє собою сукупність вкладених одна в одну коаксіальних призм; остання з наведених структур нагадує сувій (scroll). Для усіх наведених структур характерне значення відстані між сусідніми графеновими шарами, близьке до величини 0,34 нм, що відповідає площинам кристалічного графіту. Реалізація тієї чи іншої будови у певній експериментальній ситуації залежить від умов синтезу нанотрубок.
Хімія вуглецевих нанотрубок [ред.]
Спочатку головним був метод випаровування графіту у електричній дузі в потоці інертного газу. Його активно використовують і нині.
Подібним способом в присутності СеО2 та нанорозмірного нікелю отримані одношарові вуглецеві нанотрубки 0,79 нм. Дугу замінило випаровування графітової мішені в нагрітій печі стрибаючим променем лазера. Сьогодні все поширенішим стає каталітичний піроліз метану, ацетилену та оксиду вуглецю. Нанотрубки із діаметром 20 - 60 нм отримані при згорянні метану на дроті Ni – Cr. Багатошарові нанотрубки довжиною 30 - 130 мкм із внутрішнім діаметром 10 - 200 нм синтезовані із високим виходом при піролізі аерозолю, розчину бензолу з фероценом за температури 800-950°С.
Метод заснований на використанні розчинів вуглеводнів та каталізаторів. Отримання нанотрубок – процес, що важко контролюється, як правило, він супроводжується утворенням інших форм вуглецю. У наш час під терміном «хімія нанотрубок» мають на увазі синтез, очистку і різні форми хімічної модифікації внутрішньої та зовнішньої поверхні трубок. До хімії нанотрубок можна також віднести введення інших частинок у міжтрубний простір зростків, використання нанотрубок як матриць для отримання різних матеріалів, включаючи адсорбенти, сенсори та каталізатори.
Фулеренові наношестерні
Особливості будови вуглецевих нанотрубок приводять до того, що їх хімія відрізняється від хімії фулеренів і графіту. Фулерени мають невеликий об’єм внутрішньої порожнини, в якій можуть міститися лише кілька атомів інших елементів, у вуглецевих нанотрубок об’єм більший. Фулерен може утворювати молекулярні кристали, графіт – шаровий полімерний кристал. Нанотрубки – проміжний стан. Одношарові трубки ближчі до молекул, багатошарові – до вуглецевих волокон. Окрему трубку прийнято розглядати як одношаровий, а зросток трубок – як двовимірний кристал. Можливі два варіанти заповнення вуглецевих нанотрубок: у процесі синтезу і після отримання трубок. Для заповнення у процесі синтезу важливі добавки сполук, що зупиняють закриття каналу трубки. До таких речовин належить, наприклад, бор. Внутрішні порожнини трубок вдалося заповнити фулеренами С60 та С70. Подібні матеріали становлять інтерес як композити. Цікаво, що в продуктах лазерно–термічного синтезу після їх випалювання у вакуумі при температурі 1100°С знайдені структури типу наностручка. В таких структурах діаметр трубки (1,4 нм) вдвічі перевищує діаметр молекули С60 (0,7 нм), тож молекули фулерену можуть переміщуватися та формувати пари.
З метою з’єднання трубок необхідно відкрити їх кінці, наприклад, шляхом селективного окиснення. Кінці нанотрубок часто закриті п’яти- або шести-вуглецевими циклами, п’ятивуглецеві цикли менш стійкі до окиснення. Окиснення може бути проведене такими газоподібними речовинами, як кисень, повітря, діоксид вуглецю. Можливе використання водних розчинів. Розкриття кінців трубок проходить в концентрованій соляній кислоті. Можлива обробка і іншими кислотами, найбільш часто використовується азотна кислота. Механізм окиснення повністю не вивчений. Заповнення внутрішніх порожнин можна виконувати у рідких середовищах, наприклад, розплавленими оксидами різних металів. При цьому, якщо діаметр трубок менший за 3 нм, утворюється скловидна, а не кристалічна фаза.
Речовини, що вводяться в порожнини каналів вуглецевих нанотрубок, можуть брати участь в різних хімічних реакціях. При термічному розкладі оксидів і їх відновленні були отримані трубки, що вміщували метали, і виконано внутрішньотрубчасте перетворення оксиду калію на його сульфід. Заповнення внутрішніх порожнин трубок також можна виконувати шляхом хімічного осаджування з газової фази, використовуючи, наприклад, леткі сполуки металів.
Великий та важливий розділ нанохімії вуглецевих трубок присвячено отриманню різних функціональних груп на їх бічних поверхнях. Реалізація цього процесу можлива за тривалої обробки кислотами, при цьому поведінка одношарових нанотрубок залежить від способу їх отримання. З поверхні трубки функціональні групи можна видаляти за допомогою нагріву до температури вище 623 К.
Структура зі стабільним нанопуп'янком
Приєднання функціональних груп до бічних поверхонь вуглецевих трубок використовують для надання різних функцій зондам атомно-силових мікроскопів. Найкращі результати отримують при застосуванні газів.
Використання вуглецевих нанотрубок як матриць дозволяє отримати частинки міді із вузьким розподілом за розміром. Вихідні трубки із діаметрами від 5-10 до 25-35 нм синтезували каталітичним піролізом метану. Вимірюючи концентрацію солі міді у водному розчині і відношення мідь – трубка, отримували після відновлення воднем або наночастинки, або нанодротинки міді. Найменший розмір частинок міді (5 – 10 нм) досягався за низьких концентрацій солі міді в розчині. Збільшення концентрації солі сприяло утворенню нанодротинок міді діаметром від 100 нм до 5 мкм та довжиною до сотень мікронів.
Інтеркалювання одношарових та багатошарових трубок різне. У багатошарових трубках частинки, що інтеркалюються, розташовані між окремими шарами, в одношарових – потрапляють крізь міжтрубний простір зростків.
Інтеркалювання нанотрубок відрізняється від аналогічного процесу у фулеренах. Фулерени, наприклад, С60, утворюють комплекси з переносом заряду тільки із донорами електронів. За даними спектроскопії і вимірювань провідності, зростки одношарових трубок мають подвійні властивості: вони можуть взаємодіяти і з донорами, і з акцепторами. Кристалічні зростки одношарових трубок мають металічні властивості. У таких трубках спостерігається позитивний температурний коефіцієнт. Введення брому та калію зменшує електроопір трубок за температури 300 К у 30 разів і розширює межі позитивного температурного коефіцієнта. Як наслідок, трубки, леговані бромом або калієм, можна віднести до синтетичних металів.
Застосування вуглецевих нанотрубок [ред.]
Унікальні властивості Н.в. обумовлюють їх перспективне використання в ряді галузей: як армуючих добавок в композиційних матеріалах, для одержання елетропровідних композиційних полімерів, як добавка в метали для одержання надпровідникових матеріалів, компонент холодних емісійних катодів в дисплеях, якісно нове джерело світла, напівпровідникові транзистори з p-n переходами, для виробництва особливих марок графіту, пористого графіту, сировина для виробництва теплоізоляційних матеріалів, як сорбент і сховище водню, як носій каталізаторів, для виготовлення вуглець-літієвих батарей і суперконденсаторів, як мікроелектрод, як мікрозонд і т.д. Надзвичайно продуктивними є хімічні і біологічні галузі застосування Н.в.
Сфери, способи та можливості застосування нанотрубок численні і широкі. Навіть беручи до уваги те, що більша частина результатів останніх дослідів може бути невідома громадськості, вже зараз можна передбачити, що нанотрубки із часом стануть універсальним матеріалом для побудови багатьох об’єктів. Застосування нанотрубок можна розділити на кілька категорій за їх властивостями:
1) фізичні, наприклад, присадка до композитних матеріалів, що дозволяє створити із звичайного полімеру об’єкт із більшою міцністю і витривалістю, ніж із легованих сталей. Завдяки капілярним властивостям нанотрубок нині створюють ємкості для водню, що дозволяє у десятки разів збільшити їх об’ємну ємність;
2) фізико-хімічні – тут відкривається цілий пласт невідомих реакцій та процесів, із часом нанотрубки стануть основним структурним елементом в електроніці та техніці.
Якщо глобально оцінювати застосування нанотрубок, то можна впевнено стверджувати, що ми стали свідками початку ще однієї технічної революції. В наступні десять років будуть створені нанороботи-репліканти, на основі нанотрубок та інших наноматеріалів. Головною метою їх створення є побудова інших роботів та структур із атомарною якістю. Важко осягнути всі можливості такої перспективи. Ми зможемо, наприклад, перемогти практично всі інфекційні, хронічні, генетичні хвороби, досить буде мати індивідуальну програму керування для нанороботів та один наноробот-реплікант. Він розмножить себе до достатньої кількості і згідно з програмою буде на молекулярному рівні відшукувати збудника хвороби і переробляти його, наприклад, на глікоген.
Вуглецеві нанотрубки — протяжні циліндричні структури діаметром від одного до декількох десятків нанометрів і завдовжки до декількох мікрон складаються з однієї або декількох згорнутих в трубку гексагональних графітових площин (графенів) і закінчуються зазвичай півсферичною головкою.
Модель вуглецевої нанотрубки. За допомогою обертання показано її трьохвимірну структуру.
НАНОТРУБКИ ВУГЛЕЦЮ – трубчасті наноутворення вуглецю. Виявлені у 1991 р. Бувають одно- і багатошарові. Відповідно діаметр цих трубок знаходиться у межах 0,4 – 500 нм, а довжина від 1 мкм до декількох десятків мікрометрів (при синтезі довгих волокон – і до десятків см). Утворюються при розкладанні вуглецьвмісних газів (СН4, С2Н4, С2Н2, СО, парів С6Н6 і т.д.) на каталітично активних поверхнях металів (Fe, Co, Ni тощо) при т-рах 300 – 1500 °С. Н.в. можуть набувати найрізноманітніших форм – від прямолінійних до скручених волокон (у т.ч. спіралей). Головна особливість цих вуглецевих наноструктур (як і фулеренів) – їх каркасна форма. Виявлені природні форми Н.в. (напр., у шунгітах), а також можуть продукуватися штучно. При цьому встановлено, що природні Н.в. утворюються при обробці вуглецьвмісних біологічних тканин особливим грибком – карбоксиметилцелюлофагом, який виявлений, зокрема, в карстових печерах Нової Зеландії і в Карелії (родовище шунгіту).
Структура "крісло" (armchair) - (n, n)
Структура з вигнутим хіральним вектором (трансляційний вектор залишається прямим)
Графенова нанострічка
Структура з вигнутим хіральним вектором (трансляційний вектор залишається прямим)
Структура "зигзаг" (zigzag) - (n,0)
Хіральна структура в загальному випадку (n, m)
Параметри n та m can можна порахувати на кінці трубки
Графенова нанострічка
Основні властивості [ред.]
Міцнісні властивості. Н.в. дуже міцні як на розтяг, так і на згинання – модуль пружності вздовж осі трубки становить 7000 ГПа, тоді як для легованої сталі і найпружнішого металу ітрію відповідно 200 і 520 ГПа.
Адсорбція газів нанотрубками може відбуватися на зовнішніх і внутрішніх поверхнях, а також у міжтрубному просторі. Так, експериментальне вивчення адсорбції азоту при температурі 77 К на багатошарових трубках із мезопорами завширшки 4,0±0,8 нм показало, що на внутрішній поверхні адсорбується у 5 разів більше частинок, ніж на зовнішній, а ізотерми цих процесів мають різний вигляд. Адсорбція у мезопорах загалом відбувається за класичною теорією капілярної конденсації, а обчислений діаметр пор дорівнює 4,5 нм. Певна специфічність процесу пов’язана із тим, що трубки відкриті тільки з одного кінця. Зростки одношарових нанотрубок добре адсорбують азот. Вихідні очищені трубки мали внутрішню питому поверхню 233 м²/г, зовнішню – 143 м²/г. Обробка нанотрубок соляною та азотною кислотами збільшувала сумарну питому поверхню і збільшувала адсорбційну ємність за бензолом та метанолом.
Електропровідність вуглецевих нанотрубок є ключовим параметром цих об’єктів, від неї залежить їх подальше використання з метою мініатюризації приладів мікроелектроніки. Як показують результати чотириконтактних вимірювань температурних залежностей питомого опору плівки нанотрубок, виконаних в діапазоні температур 0,03 < Т < 300 К, величина опору, виміряного у напрямку, що збігається з напрямком орієнтації нанотурбок Rпар, знаходиться у діапазоні від 1 до 0,08 Ом. При цьому характер температурної залежності опору наближений до залежності Т1/2. Аналогічною функцією описується температурна залежність опору Rпар, що вимірюється у поперечному напрямку. Анізотропія опору Rперп/Rпар наближена до 8 і практично не залежить від температури. При температурах нижче 0,1 К обидві залежності виходять на насичення. Як видно із порівняння результатів вимірювань із наведеними нижче даними, що отримані для індивідуальних нанотрубок, значення питомого опору плівки нанотрубок суттєво перевищує величину, яка характеризує індивідуальну нанотрубку, питомий опір якої, у свою чергу, близький до відповідного значення для графіту. Звідси випливає, що питомий опір плівки нанотрубок визначається не стільки самими нанотрубками, скільки точками контакту між окремими нанотрубками, так що за перенос заряду відповідає стрибковий механізм. Наявність анізотропії вказує на те, що число точок контакту на одиницю довжини в повздовжньому напрямку значно менше, ніж у поперечному. Падіння опору із ростом температури вказує на активаційний характер стрибкового переносу заряду. При дуже низьких температурах головним механізмом провідності залишається квантове підбар’єрне тунелювання, що обмежує опір. Обробка експериментальних даних дозволила оцінити висоту потенціального бар’єру (10 меВ) та довжину стрибка (10 нм).
Одна з помітних властивостей нанотрубок – чітко виражена залежність електропровідності від магнітного поля. При цьому у більшості дослідів спостерігається ріст провідності із збільшенням магнітного поля, що відповідає результатам модельних передбачень, згідно з якими магнітне поле, лінії якого орієнтуються перпендикулярно до осі зразка, призводить до утворення рівня Ландау у точці перетину валентної зони та зони провідності. Щільність станів на рівні Фермі зростає, внаслідок чого провідність збільшується. У рамках даної моделі передбачається, що за низьких температур магнітоопір не залежить від температури, а за температур, що більші або наближені до ширини рівня Ландау, він зменшується із температурою. Ця залежність корелює із результатами вимірювань електричного опору джгутів багатошарових трубок діаметром близько 50 нм. Прояв властивостей напівпровідника або металу в Н.в. також залежить від їх геометричних параметрів і виду каталізатора.
Класифікація нанотрубок [ред.]
Для отримання нанотрубки (n, m), графітову площину треба розрізати по напрямах пунктирних ліній і скрутити уздовж напряму вектора R.
Як випливає з визначення, основна класифікація нанотрубок проводиться за способом згортання графітової площини. Цей спосіб згортання визначається двома числами n і m, які задають розкладання напряму згортання на вектора трансляції графітових граток. Це проілюстровано на малюнку.
За значенням параметрів (n, m) розрізняють:
прямі (ахіральні) нанотрубки
«крісло» (armchair) n=m
зигзагоподібні (zigzag) m=0 або n=0
спіральні (хіральні) нанотрубки
Як неважко здогадатися, при дзеркальному відображенні (n, m) нанотрубка переходить в (m, n) нанотрубку, тому, трубка загального вигляду дзеркально несиметрична. Прямі ж нанотрубки або переходять в себе при дзеркальному відображенні (конфігурація «крісло»), або переходять в себе з точністю до повороту.
Розрізняють металеві і напівпровідникові нанотрубки. Металеві нанотрубки проводять електричний струм навіть при абсолютному нулі температур, тоді як провідність напівпровідникових трубок рівна нулю при абсолютному нулі і зростає при підвищенні температури. Технічно кажучи у напівпровідникових трубок існує заборонена зона. Трубка виявляється металевою, якщо n-m ділиться на 3. Зокрема, металевими є всі трубки типу «крісло». Детальніше див. розділ про електронні властивості нанотрубок.
Одношарові і багатошарові нанотрубки [ред.]
Сказане відноситься до простих одношарових нанотрубок. У реальних умовах трубки нерідко виходять багатошаровими, тобто є декількома одношаровими нанотрубками, вкладені одна в іншу (так звані "російські матрьошки").
Одношарові та багатошарові коаксіальні нанотрубки утворюються в результаті згортання смуг плоских атомних сіток графіту у безшовні циліндри. Внутрішній діаметр вуглецевих нанотрубок може змінюватися від 0,4 до кількох нанометрів, а у внутрішній об’єм можуть входити інші сполуки. Одношарові трубки мають менше дефектів, а після високотемпературного випалення у інертній атмосфері можна отримати і бездефектні трубки. Тип будови трубки впливає на її хімічні, електронні та механічні властивості. Індивідуальні трубки агрегують із утворенням різних типів зростків, що мають щілини.
Багатошарові нанотрубки відрізняються від одношарових ширшим набором форм та конфігурацій. Різні види будови виявляються як у повздовжньому, так і в поперечному напрямі. Будова типу «російської матрьошки» (Russian dolls) являє собою сукупність коаксіально вкладених одна в одну одношарових циліндричних нанотрубок. Інший різновид цієї будови, являє собою сукупність вкладених одна в одну коаксіальних призм; остання з наведених структур нагадує сувій (scroll). Для усіх наведених структур характерне значення відстані між сусідніми графеновими шарами, близьке до величини 0,34 нм, що відповідає площинам кристалічного графіту. Реалізація тієї чи іншої будови у певній експериментальній ситуації залежить від умов синтезу нанотрубок.
Хімія вуглецевих нанотрубок [ред.]
Спочатку головним був метод випаровування графіту у електричній дузі в потоці інертного газу. Його активно використовують і нині.
Подібним способом в присутності СеО2 та нанорозмірного нікелю отримані одношарові вуглецеві нанотрубки 0,79 нм. Дугу замінило випаровування графітової мішені в нагрітій печі стрибаючим променем лазера. Сьогодні все поширенішим стає каталітичний піроліз метану, ацетилену та оксиду вуглецю. Нанотрубки із діаметром 20 - 60 нм отримані при згорянні метану на дроті Ni – Cr. Багатошарові нанотрубки довжиною 30 - 130 мкм із внутрішнім діаметром 10 - 200 нм синтезовані із високим виходом при піролізі аерозолю, розчину бензолу з фероценом за температури 800-950°С.
Метод заснований на використанні розчинів вуглеводнів та каталізаторів. Отримання нанотрубок – процес, що важко контролюється, як правило, він супроводжується утворенням інших форм вуглецю. У наш час під терміном «хімія нанотрубок» мають на увазі синтез, очистку і різні форми хімічної модифікації внутрішньої та зовнішньої поверхні трубок. До хімії нанотрубок можна також віднести введення інших частинок у міжтрубний простір зростків, використання нанотрубок як матриць для отримання різних матеріалів, включаючи адсорбенти, сенсори та каталізатори.
Фулеренові наношестерні
Особливості будови вуглецевих нанотрубок приводять до того, що їх хімія відрізняється від хімії фулеренів і графіту. Фулерени мають невеликий об’єм внутрішньої порожнини, в якій можуть міститися лише кілька атомів інших елементів, у вуглецевих нанотрубок об’єм більший. Фулерен може утворювати молекулярні кристали, графіт – шаровий полімерний кристал. Нанотрубки – проміжний стан. Одношарові трубки ближчі до молекул, багатошарові – до вуглецевих волокон. Окрему трубку прийнято розглядати як одношаровий, а зросток трубок – як двовимірний кристал. Можливі два варіанти заповнення вуглецевих нанотрубок: у процесі синтезу і після отримання трубок. Для заповнення у процесі синтезу важливі добавки сполук, що зупиняють закриття каналу трубки. До таких речовин належить, наприклад, бор. Внутрішні порожнини трубок вдалося заповнити фулеренами С60 та С70. Подібні матеріали становлять інтерес як композити. Цікаво, що в продуктах лазерно–термічного синтезу після їх випалювання у вакуумі при температурі 1100°С знайдені структури типу наностручка. В таких структурах діаметр трубки (1,4 нм) вдвічі перевищує діаметр молекули С60 (0,7 нм), тож молекули фулерену можуть переміщуватися та формувати пари.
З метою з’єднання трубок необхідно відкрити їх кінці, наприклад, шляхом селективного окиснення. Кінці нанотрубок часто закриті п’яти- або шести-вуглецевими циклами, п’ятивуглецеві цикли менш стійкі до окиснення. Окиснення може бути проведене такими газоподібними речовинами, як кисень, повітря, діоксид вуглецю. Можливе використання водних розчинів. Розкриття кінців трубок проходить в концентрованій соляній кислоті. Можлива обробка і іншими кислотами, найбільш часто використовується азотна кислота. Механізм окиснення повністю не вивчений. Заповнення внутрішніх порожнин можна виконувати у рідких середовищах, наприклад, розплавленими оксидами різних металів. При цьому, якщо діаметр трубок менший за 3 нм, утворюється скловидна, а не кристалічна фаза.
Речовини, що вводяться в порожнини каналів вуглецевих нанотрубок, можуть брати участь в різних хімічних реакціях. При термічному розкладі оксидів і їх відновленні були отримані трубки, що вміщували метали, і виконано внутрішньотрубчасте перетворення оксиду калію на його сульфід. Заповнення внутрішніх порожнин трубок також можна виконувати шляхом хімічного осаджування з газової фази, використовуючи, наприклад, леткі сполуки металів.
Великий та важливий розділ нанохімії вуглецевих трубок присвячено отриманню різних функціональних груп на їх бічних поверхнях. Реалізація цього процесу можлива за тривалої обробки кислотами, при цьому поведінка одношарових нанотрубок залежить від способу їх отримання. З поверхні трубки функціональні групи можна видаляти за допомогою нагріву до температури вище 623 К.
Структура зі стабільним нанопуп'янком
Приєднання функціональних груп до бічних поверхонь вуглецевих трубок використовують для надання різних функцій зондам атомно-силових мікроскопів. Найкращі результати отримують при застосуванні газів.
Використання вуглецевих нанотрубок як матриць дозволяє отримати частинки міді із вузьким розподілом за розміром. Вихідні трубки із діаметрами від 5-10 до 25-35 нм синтезували каталітичним піролізом метану. Вимірюючи концентрацію солі міді у водному розчині і відношення мідь – трубка, отримували після відновлення воднем або наночастинки, або нанодротинки міді. Найменший розмір частинок міді (5 – 10 нм) досягався за низьких концентрацій солі міді в розчині. Збільшення концентрації солі сприяло утворенню нанодротинок міді діаметром від 100 нм до 5 мкм та довжиною до сотень мікронів.
Інтеркалювання одношарових та багатошарових трубок різне. У багатошарових трубках частинки, що інтеркалюються, розташовані між окремими шарами, в одношарових – потрапляють крізь міжтрубний простір зростків.
Інтеркалювання нанотрубок відрізняється від аналогічного процесу у фулеренах. Фулерени, наприклад, С60, утворюють комплекси з переносом заряду тільки із донорами електронів. За даними спектроскопії і вимірювань провідності, зростки одношарових трубок мають подвійні властивості: вони можуть взаємодіяти і з донорами, і з акцепторами. Кристалічні зростки одношарових трубок мають металічні властивості. У таких трубках спостерігається позитивний температурний коефіцієнт. Введення брому та калію зменшує електроопір трубок за температури 300 К у 30 разів і розширює межі позитивного температурного коефіцієнта. Як наслідок, трубки, леговані бромом або калієм, можна віднести до синтетичних металів.
Застосування вуглецевих нанотрубок [ред.]
Унікальні властивості Н.в. обумовлюють їх перспективне використання в ряді галузей: як армуючих добавок в композиційних матеріалах, для одержання елетропровідних композиційних полімерів, як добавка в метали для одержання надпровідникових матеріалів, компонент холодних емісійних катодів в дисплеях, якісно нове джерело світла, напівпровідникові транзистори з p-n переходами, для виробництва особливих марок графіту, пористого графіту, сировина для виробництва теплоізоляційних матеріалів, як сорбент і сховище водню, як носій каталізаторів, для виготовлення вуглець-літієвих батарей і суперконденсаторів, як мікроелектрод, як мікрозонд і т.д. Надзвичайно продуктивними є хімічні і біологічні галузі застосування Н.в.
Сфери, способи та можливості застосування нанотрубок численні і широкі. Навіть беручи до уваги те, що більша частина результатів останніх дослідів може бути невідома громадськості, вже зараз можна передбачити, що нанотрубки із часом стануть універсальним матеріалом для побудови багатьох об’єктів. Застосування нанотрубок можна розділити на кілька категорій за їх властивостями:
1) фізичні, наприклад, присадка до композитних матеріалів, що дозволяє створити із звичайного полімеру об’єкт із більшою міцністю і витривалістю, ніж із легованих сталей. Завдяки капілярним властивостям нанотрубок нині створюють ємкості для водню, що дозволяє у десятки разів збільшити їх об’ємну ємність;
2) фізико-хімічні – тут відкривається цілий пласт невідомих реакцій та процесів, із часом нанотрубки стануть основним структурним елементом в електроніці та техніці.
Якщо глобально оцінювати застосування нанотрубок, то можна впевнено стверджувати, що ми стали свідками початку ще однієї технічної революції. В наступні десять років будуть створені нанороботи-репліканти, на основі нанотрубок та інших наноматеріалів. Головною метою їх створення є побудова інших роботів та структур із атомарною якістю. Важко осягнути всі можливості такої перспективи. Ми зможемо, наприклад, перемогти практично всі інфекційні, хронічні, генетичні хвороби, досить буде мати індивідуальну програму керування для нанороботів та один наноробот-реплікант. Він розмножить себе до достатньої кількості і згідно з програмою буде на молекулярному рівні відшукувати збудника хвороби і переробляти його, наприклад, на глікоген.