русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция № 13. Комбинаторика.


Дата добавления: 2015-07-23; просмотров: 988; Нарушение авторских прав


В этой лекции даются основные начальные сведения из комбинаторики. Это служебный раздел математики, занимающийся исследованием различных комбинаций элементов всевозможных множеств. Формулы комбинаторики широко используются теории вероятностей, в теории вычислительных машин, в некоторых разделах экономике, в статистике и других прикладных дисциплинах.

 

  1. Правила суммы и произведения.

 

Будем в дальнейшем оперировать только с множествами, содержащими конечное число элементов. На бесконечные множества все нижеприведённые правила и формулы не распространяются.

Теорема 13.1. Пусть даны непересекающиеся конечные множества . Тогда мощность объединения этих множеств равна сумме мощностей данных множеств:

.

Доказательство этой теоремы очевидно. Но для нас представляет интерес другая интерпретация этой теоремы, которую мы сформулируем для двух множеств.

Если некоторый элемент можно выбрать способами, а элемент - способами, причём любой способ выбора элемента отличается от любого способа выбора элемента , то выбор “ или ” можно сделать способами. Это правило называется правилом суммы.

Пусть даны непересекающиеся конечные множества . Обозначим число элементов в этих множествах (их мощности) . Рассмотрим декартово произведение этих множеств . Напомним, что элементами этого произведения будут векторы (кортежи) длины вида .

Теорема 13.2. Число элементов в декартовом произведении множеств равно произведению мощностей этих множеств:

.

Как и в предыдущем случае, сформулируем данную теорему упрощённым образом для двух множеств. Если элемент можно выбрать способами, а элемент - способами, причём любой способ выбора элемента отличается от любого способа выбора элемента , то выбор “ и ” (то есть, пары ) можно сделать способами. Это правило называется правилом произведения, или умножения.



Оба сформулированных правила верны для любого конечного числа конечных множеств, и, в соответствующей форме, называются обобщёнными.

Пример 1.

а) В некоторой средней школе имеется три пятых класса, в которых обучаются соответственно 28, 31 и 26 учащихся. Требуется одного из них выбрать для участия в совете школы. Сколькими способами можно сделать выбор?

По правилу суммы получаем .

б) В секции фигурного катания занимаются 14 мальчиков и 18 девочек. Сколькими различными способами из детей, занимающихся в секции, можно образовать спортивные пары.

По правилу произведения получаем .

 

  1. Размещения.

 

Определение. Любой вектор длины , составленный из элементов элементного множества , в котором все элементы различны, называется размещением без повторений по элементов из . Число всех размещений без повторений по элементов из обозначается и равно .

Пример 2. Куплено различных 12 книг. На полке можно поставить в ряд ровно 6 книг. Сколькими различными способами можно это сделать?

Будем считать различными не только те случаи, когда берутся разные книги, но и когда они по-разному расставлены на полке (в различном порядке). Тогда речь идёт о перестановках по 6 из 12. Получаем: .

Рассмотрим существенно другой случай, а именно когда элементы множества в векторах могут повторяться.

Определение. Любой вектор длины , составленный из элементов элементного множества , состоящего из элементов, в котором все элементы различны, называется размещением с повторениями по элементов из . Число всех размещений с повторениями по элементов из обозначается и равно .

Пример 3. Сколько различных комбинаций может получиться при одновременном бросании трёх игральных костей?

Каждая игральная кость представляет собой кубик, на гранях которого нанесено от одного до 6 очков. При каждом бросании мы будем получать наборы вида , где - количество очков, выпавших на соответствующей кости. Речь идёт о перестановках с повторениями по 3 элемента из 6. Получаем: .

Замечание. Очевидно, что размещения без повторений являются частным случаем размещений с повторениями.

 

  1. Перестановки.

Определение. Любой вектор длины , составленный из элементов элементного множества , в котором все элементы различны, называется перестановкой без повторений из элементов. Число всех перестановок без повторений из элементов обозначается и равно .

Из определения и формулы видно, что перестановки без повторений есть частный случай размещений без повторений, при условии .

Пример 4. Сколькими различными способами можно расставить на полке 10 различных книг?

Здесь, в отличие от примера 2, значение имеет только порядок расставляемых книг. Поэтому речь идёт о перестановках из 10 элементов. Получаем: .

Рассмотрим случай, когда элементы множества повторяются по нескольку раз. Для определённости пусть 1-й элемент повторяется раз, 2-й элемент - раз и так далее. Тогда векторы длины , образованные из элементов данного множества называются перестановками из элементов с повторениями. Число таких перестановок обозначается и равно .

Положив в последней формуле , получим формулу для перестановок без повторений.

Пример 5. Сколько различных шестизначных чисел могут быть записано с помощью цифр 1, 2, 2, 2, 3, 3?

Имеется набор из шести цифр, в котором цифра 2 повторяется трижды и цифра 3 – дважды. Полученные числа будут представлять собой перестановки с повторениями из 6 элементов. Получаем: .

 

  1. Сочетания. Бином Ньютона.

 

Прежде всего, отметим одно существенное отличие перестановок от размещений. Если в размещениях векторы различаются и по составу элементов, и по их расположению (порядку) в наборе, то в перестановках векторы различаются только по расположению элементов. Естественно рассмотреть случай, когда векторы, наоборот, будут различаться только по составу элементов.

Определение. Любые различные векторы длины , составленные из элементов элементного множества , различающиеся между собой по набору элементов, но не по их расположению в наборе, называются сочетаниями по элементов из .

Если все элементы, образующие сочетания, различны, то их называют сочетанием без повторений. Обозначение всех сочетаний без повторений . Формула для вычисления . Если некоторые (или все) элементы, образующие сочетания, могут повторяться, то их называют сочетаниями повторениями. Обозначение всех сочетаний без повторений . Формула для вычисления . Запоминать последнюю формулу нет необходимости.

Замечание 1. Сочетания являются частным случаем размещений. Разница между сочетаниями и размещениями из определения неочевидна, но на конкретных примерах её легко видеть. Так, например, векторы и являются различными размещениями, но обозначают одно и то же сочетание.

Замечание 2. Для сочетаний без повторений обязательно требование , причём в случае равенства получим естественный результат . Но для сочетаний с повторениями это требование необязательно, как будет видно из приведённого ниже примера.

Пример 6.

а) В отделе работают 10 сотрудников. Требуется отобрать трёх из них для того, чтобы направить в командировку. Сколькими способами можно это сделать?

Поскольку имеет значение только то, какие именно сотрудники отобраны, то речь идёт о сочетаниях без повторений по 3 элемента из 10. Получаем:

б) В цветочном магазине имеются в продаже 5 различных видов цветов. Покупателю требуется составить букет из 7 цветов. Сколькими способами можно это сделать?

Будем считать различными те букеты, которые отличаются друг от друга по подбору цветов. Поскольку цветы в букете могут повторяться, то речь идёт о сочетаниях с повторениями по 7 элементов из 5. Тогда получим .

Одним из наиболее известных примеров использования комбинаторных формул является так называемый бином Ньютона. В общем виде формула бинома (двучлена) Ньютона выглядит так:

.

С частными случаями применения этой формулы ( для случаев и ) сталкиваются ещё в школе при изучении формул сокращённого умножения:

.

На практике для удобства применении бинома Ньютона применяют так называемый треугольник Паскаля, который содержит числовые коэффициенты полинома в правой части формулы:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

…………………..

 

Назад, в начало конспекта.

 

 



<== предыдущая лекция | следующая лекция ==>
Лекция № 12. Язык логики предикатов. | Лекция № 14. Графы: основные понятия и операции.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.