русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Нахождение минимального пути в нагруженном орграфе


Дата добавления: 2015-07-23; просмотров: 791; Нарушение авторских прав


Существует несколько алгоритмов нахождения кратчайшего маршрута в нагруженном графе:

Алгоритм Форда – Беллмана.

Алгоритм Дейкстры.

Пусть Д=(V,X) – нагруженный орграф. V={v1,…,vn}.

C(Д)nxn=[cij] – матрица длин дуг нагруженного орграфа.

Величина li(k), где i=1,…,n; k=1,2,… , равна длине минимального пути среди путей из v1 в vi, содержащих не более k дуг. Если таких путей нет, то li(k)=¥. l1(0) =0, li(0)=¥, i=2,…,n.

Утверждение:

При i=2,…,n, k≥0:

При i=1, k≥0:

Число дуг в простой цепи не превосходит n-1. Следовательно,
li(k)= li(n-1) i=2,..,n,k≥n-1.

Если li(n-1)=¥ (i Î {2,..,n}), то vi не достижима из v1, а если li(n-1)<¥, то vi достижима из v1 и при этом li(n-1) –длина минимального пути из v1 в vi.

Таким образом, по li(n-1) можно судить о достижимости вершин vi (i=2,…,n) из v1, а также определить длины минимальных путей из v1 в достижимые вершины.

Алгоритм Форда-Беллмана нахождения минимального пути в нагруженном орграфе из v1 в vi1 (i1≠1)

Шаг 1: Пусть таблица величин li(k)(i=1,2,…,n;k=0,1,…,n-1) составлена. Если , то вершина не достижима из . В этом случае работа алгоритма заканчивается.

Шаг 2: Пусть . Тогда число выражает длину любого минимального пути из в в нагруженном орграфе Д.

Определим минимальное число k1≥1, при котором выполняется равенство . По определению чисел li(k) получаем, что k1 – минимальное число дуг в пути среди всех минимальных путей из в в нагруженном орграфе Д.

Шаг 3: Последовательно определяем номера такие, что:

(*)

Из (*) с учетом того, что ,имеем Þ

(1)

Складывая равенства (*) и учитывая (1) получаем: , т.е. - искомый минимальный путь из в в нагруженном орграфе Д.

В этом пути ровно k1 дуг. Следовательно, мы определили путь с минимальным числом дуг среди всех минимальных путей из в в нагруженном орграфе Д.





<== предыдущая лекция | следующая лекция ==>
Нагруженные графы. Расстояния в нагруженном графе | Упражнения


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.256 сек.