русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Понятие множества. Операции над множествами


Дата добавления: 2015-07-23; просмотров: 603; Нарушение авторских прав


Под множеством будем понимать совокупность определённых и различимых между собой объектов, которая рассматривается как единое целое. Эти объекты называются элементами множества.

Понятие множества принимается как исходное, первичное, т.е. не сводимое к другим понятиям. Множества будем обозначать большими буквами латинского алфавита: A, B, C… , а элементы множества – малыми буквами: a, b, c… .

Определение:Множество, не содержащее ни одного элемента, называется пустыммножеством. Обозначается символом .

Определение:Некоторое фиксированное множество, которое содержит все рассмотренные в данной теории множества, называется универсальными обозначается U.

Определение:Два множества A и B называются равными и обозначаются A=B, если A и B содержат одни и те же элементы, т.е. если каждый элемент множества A является элементом множества B, и каждый элемент множества B является элементом множества A.

Определение:Множество A называется подмножеством множества B, если каждый элемент множества A принадлежит множеству B. В этом случае пишут . Символ называется знаком включения. Если и , то говорят, что A есть собственное подмножество множества B. В этом случае пишут .

Множество всех подмножеств множества A называется множеством-степенью и обозначается P(A).

Для доказательства равенства двух множеств A и B достаточно доказать, что и , т.е. доказательство равенства двух множеств состоит из доказательства двух утверждений:

1.

2.

Для графического изображения множеств и их свойств, а также отношений между ними используются так называемые диаграммы Эйлера-Венна. Множество изображается кругом (или другой связной фигурой) на плоскости и мыслится как множество точек круга (фигуры).

Примеры



<== предыдущая лекция | следующая лекция ==>
Введение | Операции над множествами


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.105 сек.