русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Решение уравнений в кольце остатков по данному модулю


Дата добавления: 2015-07-23; просмотров: 5099; Нарушение авторских прав


 

Сравнение всегда имеет решение, если числа a и b взаимно просты.

Это следует из того, что выражение ax-by = 1 – это линейное представление наибольшего общего делителя a и b.

 

Такую задачу иногда формулируют в виде: найти 1/a в кольце вычетов по модулю b. В самом деле, выражение ax = 1 означает по сути то же самое, что x = 1/a (x – искомая величина).

 

В некоторых случаях вычисляют c/a в кольце вычетов по модулю b. В этом случае сначала можно вычислить 1/a, затем умножить результат на c в кольце вычетов по модулю b.

 

Уточняем, что умножить число в кольце вычетов по модулю b означает сначала умножить число, затем заменить результат его остатком от деления на b.

 

Пример

 

Можно решить уравнение 7x = 1 в кольце вычетов по модулю 9, то есть провести вычисление 1/7 в Z9.

 

В данном случае обозначим неизвестную величину как х.

Тогда x = 1/7 в Z9 Û

7x º 1 (mod 9) Û

7x – 1 9 Û

7x – 1 = 9y Û

7x – 9y = 1

 

Мы получили уже знакомую нам ситуацию – линейное диофантово уравнение.

 

Можем его решить, но для первоначальной задачи достаточно найти всего одно значение х – например, подойдёт x = 4. Заметим, что это число находится в пределах от 0 до 8, поэтому может быть остатком при делении на 9.

 

Итак, ответ: x = 4.

 

Примечание. Ответ легко проверить умножением: 4 х 7 при делении на 9 даёт остаток 1.

 

Если бы мы искали, например, 5/7 в Z9, то сначала нашли бы сначала 1/7 в Z9 (получив число 4), а затем домножили бы это число на 5 и взяли бы остаток при делении на 9 (остаток от деления 20 на 9 равен 2).

В этом случае ответ был бы равен 2.

 

Примечание. В задачах на нахождение выражений вида a/b в кольце вычетов по модулю c ответ всегда единственный, и является целым числом, находящимся в пределах от 0 до (c - 1).



В некоторых случаях деление невозможно, поскольку не каждое диофантово уравнение имеет решение. Например, уравнение 4x º 1 (mod 10) не имеет решений, поскольку 4x – чётное число, и при делении на 10 остаток будет чётным.

 



<== предыдущая лекция | следующая лекция ==>
Системы счисления | Китайская теорема об остатках (теория)


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.834 сек.