Логари́фм числа по основанию (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число»[1]) определяется[2] как показатель степени, в которую надо возвестиоснование
, чтобы получить число . Обозначение: , произносится: "логарифм по основанию ".
Из определения следует, что нахождение равносильно решению уравнения . Например, потому что
Вычисление логарифма называется логарифмированием. Числа чаще всего вещественные, но существует также теория комплексных логарифмов.
Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений[3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь»[4].
Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.
Со временем выяснилось, что логарифмическая функция незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основанием (натуральный логарифм), (десятичный) и (двоичный).
Вещественный логарифм [править]
Логарифм вещественного числа по определению есть решение уравнения Случай интереса не представляет, поскольку тогда при это уравнение не имеет решения, а при любое число является решением; в обоих случаях логарифм не определён. Аналогично заключаем, что логарифм не существует при нулевом или отрицательном ; кроме того, значение показательной функции всегда положительно, поэтому следует исключить также случай отрицательного . Окончательно получаем[5]:
Вещественный логарифм имеет смысл при
Как известно, показательная функция (при выполнении указанных условий для ) существует, монотонна и каждое значение принимает только один раз, причём диапазон её значений содержит все положительные вещественные числа[6]. Отсюда следует, что значение вещественного логарифма положительного числа всегда существует и определено однозначно.
Наиболее широкое применение нашли следующие виды логарифмов.
· Натуральные: , основание: число Эйлера
· Десятичные: , основание: число
· Двоичные: или , основание: Они применяются, например, в теории информации, информатике, во многих разделах дискретной математики.