Чтобы научить школьника решать задачи, необходимо, не только познакомить его с типовыми приемами, но и показать те ситуации, в которых срабатывает тот или иной прием.
Хорошая классификация должна помогать этому, ее применение должно сокращать путь от условия до решения. Для этого необходимо объединить в группы задачи, обладающие одновременно схожими условиями и принципами решения.
Общность условий обеспечивает распознавание задачи учеником, отнесение ее к конкретному типу, то есть создает возможность реального применения классификации.
Общность решений помогает ученику сделать следующий шаг — подобрать метод решения, то есть обеспечивает результативность классификации.
Таким образом, в основу классификации должен лечь некий признак, явно видимый из условия задачи и существенно влияющий на ее решение. В качестве такого признака предлагается рассматривать информационную роль таблицы в алгоритме, то есть вид табличной величины.
Очевидно, что таблица может быть результатом алгоритма (заполнение), аргументом (обработка) и аргументом-результатом (модификация).
При более внимательном рассмотрении становится ясно, что обработка (таблица — аргумент) включает слишком большой класс задач, решаемых разными методами. Среди них можно выделить две большие группы: задачи анализа и задачи поиска. В задачах анализа требуется просмотреть всю таблицу и определить какие-то ее характеристики (сумма, произведение, количество элементов с заданным свойством и т.д.) В задачах поиска требуется найти в таблице элемент, обладающий нужным свойством, причем просматривать всю таблицу для этого необязательно.
С другой стороны, многие задачи модификации не требуют освоения специальных приемов и сводятся к комбинации анализа и заполнения. Это, например, известная задача о корректировке отчета (элементы, меньшие100, заменить на 100) и ей подобные.
Поэтому выделять модификацию как отдельный класс задач не стоит. Реальный интерес представляют задачи перестановки, в которых необходимо переставить элементы заданной таблицы в соответствии с какими-то требованиями. Эти задачи не сводятся к другим и могут рассматриваться как самостоятельная группа. Главная задача перестановки – это сортировка элементов массива, то есть элементы массива необходимо переставить так, чтобы они располагались, например, по возрастанию. Задача сортировки массивов не падает с неба, а относится к одной из групп задач на табличные величины.
Классификация задач, окончательно получаем такие группы задач:
1. Заполнение
2. Анализ
3. Поиск
4. Перестановка.
Приведем задачи для каждой группы.
4. Составление алгоритмов для обработки потока данных