русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Двойной интеграл и его свойства


Дата добавления: 2015-07-09; просмотров: 778; Нарушение авторских прав


Опр. Если существует один и тот же предел интегральных сумм при и , не зависящий от способа разбиения области D и выбора точек Pi , то он называется двойным интегралом от функции f(x, y) по области D и обозначается . Область D при этом называется областью интегрирования.

Свойства :

1. Если функция f(x, y) интегрируема в D, то kf(x, y) тоже интегрируема в этой области, причем

  1. Если в области D интегрируемы функции f(x, y) и g(x, y), то в этой области интегрируемы и функции f(x, y) ± g(x, y), и при этом

3. Если для интегрируемых в области D функций f(x, y) и g(x, y) выполняется неравенство f(x, y) ≤ g(x, y) , то

4. Если область D разбита на две области D1 и D2 без общих внутренних точек и функция f(x, y) непрерывна в области D, то

5. В случае интегрируемости на D функции f(x, y) в этой области интегрируема и функция | f(x, y) |, и имеет место неравенство

6. т.к.

40. Вычисление двойного интеграла в декартовых координатах

Вычисление двойного интеграла сводится к последова­тельному вычислению двух определенных интегралов. Пусть область D ограничена кривыми , , , , причем , а функции непрерывны на отрезке . Прямая, параллельная оси 0y, пересекает границу области D не более чем в двух точках. Такую область D называют простой и правильной в направлении оси 0y. Тогда , причём сначала вычисляется внутренний интеграл по переменной y, а полученный результат интегрируем по x. Если на отрезке верхняя или нижняя граница области D задаются несколькими аналитическими выражениями, то область D следует разбить на количество областей, равное числу аналитических выражений верхней (или нижней) границы области , причём двойной интеграл по области D в этом случае равен сумме интегралов по полученным областям.

 



<== предыдущая лекция | следующая лекция ==>
Теоремы сравнения для несобственных интегралов. Понятие абсолютной сходимости. | Замена переменных в двойном интеграле, двойной интеграл в полярных координатах


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.