русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Общие понятия


Дата добавления: 2015-07-09; просмотров: 663; Нарушение авторских прав


Рекурсивным называют метод, если он вызывает сам себя в качестве вспомогательного. В основе рекурсивного метода лежит так называемое рекурсивное определение какого-либо понятия. Классическим примером рекурсивного метода является метод, вычисляющий факториал.

Из курса математики известно, что 0!=1!=1, n!=1*2*3…*n. С другой стороны n!=(n-1)!*n. Таким образом, известны два частных случая параметра n, а именно n= 0 и n=1, при которых мы без каких-либо дополнительных вычислений можем определить значение факториала. Во всех остальных случаях, то есть для n>1, значение факториала может быть вычислено через значение факториала для параметра n-1. Таким образом, рекурсивный метод будет иметь вид:

 

long F(int n)

{

// Дошли до 0 или 1?

if (n == 0 || n == 1)

// Нерекурсивная ветвь

return 1;

else

// Шаг рекурсии: повторный вызов

// метода с другим параметром

return n * F(n - 1);

}

 

// Пример вызова рекурсивного метода

long f = F(3);

MessageBox.Show(f.ToString());

 

Рассмотрим работу описанного выше рекурсивного метода для n=3.

 

Рис. 14.1. Структура рекурсивных вызовов

Первый вызов метода осуществляется из основной программы, в нашем случае командой f = F(3). Этап вхождения в рекурсию обозначим стрелками с подписью «шаг». Он продолжается до тех пор, пока значение переменной n не становится равной 1. После этого начинается выход из рекурсии (стрелки с подписью «возврат»). В результате вычислений получается, что F(3) = 3 * 2 * 1.

Рассмотренный вид рекурсии называют прямой. Метод с прямой рекурсией обычно содержит следующую структуру:

 

if (<условие>)

<оператор>;

Else

<вызов этого же метода с другими параметрами>;

 

В качестве <условия> обычно записываются некоторые граничные случаи параметров, передаваемых рекурсивному методу, при которых результат его работы заранее известен, поэтому далее следует простой оператор или блок, а в ветви else происходит рекурсивный вызов данного метода с другими параметрами.



Что необходимо знать для реализации рекурсивного процесса? Со входом в рекурсию осуществляется вызов метода, а для выхода необходимо помнить точку возврата, т. е. то место программы откуда мы пришли и куда нам нужно будет возвратиться после завершения метода. Место хранения точек возврата называется стеком вызовов и для него выделяется определенная область оперативной памяти. В этом стеке запоминаются не только адреса точек возврата, но и копии значений всех параметров. По этим копиям восстанавливается при возврате вызывающий метод. При развертывании рекурсии за счет создания копий параметров возможно переполнение стека. Это является основным недостатком рекурсивного метода. С другой стороны, рекурсивные методы позволяют перейти к более компактной записи алгоритма.

Следует понимать, что любой рекурсивный метод можно преобразовать в обычный метод с использованием циклов. И практически любой метод можно преобразовать в рекурсивный, если выявить рекуррентное соотношение между вычисляемыми в методе значениями.

Рассмотрим пример кода для создания набора самоподобных структур. В нашем случае это будет набор увеличивающихся квадратов (рис. 15.2).

 

Рис. 15.2. Набор квадратов

При проектировании данной программы были созданы два метода:

 

private void MyDraw(Graphics g, int N, int x, int y)

{

if (N == 0)

return;

else

{

// Отрисовка прямоугольника

g.DrawRectangle(new Pen(Brushes.Blue, 2),

0, 0, x, y);

// Увеличение x и y на 50

x += 50;

y += 50;

N--;

// Рекурсивный вызов с новыми параметрами

MyDraw(g, N, x, y);

}

}

 

private void Form1_Paint(object sender,

PaintEventArgs e)

{

Graphics g = e.Graphics;

// Первый вызов метода и вход в рекурсию

MyDraw(g, 7, 50, 50);

}

 

Координаты левого верхнего угла всех прямоугольников неизменны и находятся в точке (0, 0). Поэтому в параметрах метода MyDraw достаточно передавать x и y для правого нижнего угла. Также в параметрах передается N, значение которой определяет текущую вложенность рекурсии (сколько вызовов рекурсии еще будет).



<== предыдущая лекция | следующая лекция ==>
Поиск элемента | Формирование задержки с помощью таймера


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.633 сек.