русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Рекурсивные методы


Дата добавления: 2015-06-12; просмотров: 719; Нарушение авторских прав


Суть рекурсивных методов — сведение задачи к самой себе. Вы уже знаете, что в Паскале существует возможность рекурсивного определения функций и процедур. Эта возможность представляет собой способ программной реализации рекурсивных алгоритмов. Однако увидеть рекурсивный путь решения задачи (рекурсивный алгоритм) часто очень непросто.

Рассмотрим классическую задачу, известную в литературе под названием «Ханойская башня» (рис. 50).

 

На площадке (назовем ее А) находится пирамида, составленная из дисков уменьшающегося от основания к вершине размера.

Эту пирамиду в том же виде требуется переместить на площадку В. При выполнении этой работы необходимо соблюдать следующие ограничения:

• перекладывать можно только по одному диску, взятому сверху пирамиды;

• класть диск можно либо только на основание площадки, либо на диск большего размера;

• в качестве вспомогательной можно использовать площадку С.

Название «Ханойская башня» связано с легендой, согласно которой в давние времена монахи одного ханойского храма взялись переместить по этим правилам башню, состоящую из 64 дисков. С завершением их работы наступит конец света. Монахи все еще работают и, надеемся, еще долго будут работать!

Нетрудно решить эту задачу для двух дисков. Обозначая перемещения диска, например, с площадки А на В так: А → В, напишем алгоритм для этого случая

А→С; А→В; С→В.

Всего 3 хода! Для трех дисков алгоритм длиннее:

А→В; А→С; В→С; А→В; С→А; С→В; А→В.

В этом случае уже требуются 7 ходов.

Подсчитать количество ходов (N) для k дисков можно по следующей рекуррентной формуле:

N(1) = 1; N(k) = 2х N(k - 1) + 1.

Например, N(10) = 1023, N(20) = 104857. А вот сколько перемещений нужно сделать ханойским монахам:

N(64) = 18446744073709551615.



Попробуйте прочитать это число.

Теперь составим программу, по которой машина рассчитает алгоритм работы монахов и выведет его для любого значения п (количества дисков). Пусть на площадке А находятся п дисков. Алгоритм решения задачи будет следующим:

1. Если п = 0, то ничего не делать.

2. Если п > 0, то переместить п — 1 диск на С через В;

переместить диск с А на В (А → В)

переместить п — 1 диск с С на В через А.

При выполнении пункта 2 последовательно будем иметь три состояния (рис. 51).

 

Описание алгоритма имеет явно рекурсивный характер

Перемещение n дисков описывается через перемещение п — 1 диска. А где же выход из этой последовательности рекурсивных ссылок алгоритма самого на себя? Он в пункте 1, каким бы ни показалось странным его тривиальное содержание.

А теперь построим программу на Паскале. В ней имеется рекурсивная процедура Напоу, выполнение которой заканчивается только при п = 0. При обращении к процедуре используются фактические имена площадок, заданные их номерами: 1, 2, 3. Поэтому на выходе цепочка перемещений будет описываться в таком виде:

1→2 1→3 2→3 и т.д.

 

Это одна из самых удивительных программ! Попробуйте воcпроизвести ее на машине. Проследите, как изменяется число ходов с ростом п. Для этой цели можете сами добавить в программу счетчик ходов и в конце вывести его значение или печатать ходы с порядковыми номерами.



<== предыдущая лекция | следующая лекция ==>
Метод последовательной детализации | Методы перебора в задачах поиска


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.