русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

По результатам для дискретных факторов


Дата добавления: 2015-06-12; просмотров: 495; Нарушение авторских прав


 

Случайные Факторы Переменные Математическое Ожидание целевой функции
p1 e11 p2 e12 pl e1l pL e1L
p1 e21 p1 e22 pl e2l p1 e2L
 
p1 em1 p1 em2 pl eml p1 emL
p1 eM1 p1 eM1 pl eMl p1 eM1

Набор значений переменных, при котором достигается максимальное (минимальное) значение математического ожидания, является оптимальным.

На практике способ осреднения по результату реализуют с помощью метода статистического моделирования. Обобщенный алгоритм этого метода следующий:

1. Для каждой из случайных величин yk производят случайное испытание при соответствующем законе распределения с параметрами и вычисляют ее значение.

2. Эта операция повторяется до тех пор, пока не будут найдены значения все случайных величин .

3. Используя найденные величины , вычисляют частное значение e по заданной функции.

4. Операции 1. 2, 3 повторяют до тех пор, пока не будет получено N значений функции е.

5. На основании найденных значений e вычисляют плотность распределения вероятностей, а затем математическое ожидание и дисперсию случайной величины e. Эта величина может быть теперь записана в виде , где , задаются как функция входных величин или параметров.

В связи с тем что при статистическом моделировании математическая модель задана в виде моделирующего алгоритма, для поиска оптимальных решений обычно используют метод экспериментальной последовательной оптимизации на ЭВМ.

Способ осреднения по результату не ликвидирует влияние на результат фактора случайности. Результат каждого отдельного расчета, осуществляемого при случайных заранее не известных значениях величины , может сильно отличаться от ожидаемой средней как в лучшую, так и в худшую сторону, однако при многократном повторении расчетов эти различия в среднем сглаживаются. Для того чтобы составить представление о том, каков риск в каждом отдельном случае, желательно кроме математического ожидания интересующего показателя оценивать также и его дисперсию.



Метод статистического моделирования, реализующий способ осреднения по результату, основан на общих теоремах теории вероятностей, не содержит никаких ограничений и может быть применен к решению любой задачи, а при достаточно большом числе реализаций от него можно требовать любой точности. Указанные достоинства метода обусловили его широкое применение для решения самых сложных задач моделирования производственных процессов.

Вместе с тем метод статистического моделирования обладает и недостатком – большой трудоемкостью расчетов, поэтому стал широко применяться только с момента развития электронной вычислительной техники. Использование теории оптимального планирования экспериментов позволяет сокращать объемы расчетов без снижения точности за счет целенаправленного формирования статистических выборок.

Сокращению объема вычислений способствует также следующий прием. На первом этапе оптимизации используется способ искусственного сведения к детерминированной схеме; на втором – способ осреднения по результату, где начальным для проведения оптимизации является оптимальное решение предыдущего этапа.

 



<== предыдущая лекция | следующая лекция ==>
Экспериментальная оптимизация на ЭВМ | Принятие решений при наличии неопределенных факторов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.175 сек.