русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Промахи


Дата добавления: 2015-01-16; просмотров: 736; Нарушение авторских прав


О приближенных вычислениях

При выполнении вычислений следует всегда руководство­ваться практически необходимой точностью. Вести вычисления с точностью большей, чем это допускают данные задачи, бессмыс­ленно.

При округлении руководствуйтесь следующими пра­вилами:

1. Округление достигается простым отбрасыванием цифр, ес­ли первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра уве­личивается также и в том случае, когда первая из отбрасываемых цифр - 5, а за ней есть одна или несколько цифр, отличных от нуля. Например, различные округления числа 35.856 будут 35.86; 35.9; 36.

3. Если отбрасываемая цифра равна 5, а за ней нет знача­щих цифр, то округление производится на ближайшее четное чис­ло, т.е. последняя сохраняемая цифра оставляется неизменной, если она четная, и увеличивается на единицу, если она нечетная. Например, 0.435 округляем до 0.44; 0.465 округляем до 0.46. В этом случае при многочисленных округлениях избыточные числа будут встречаться примерно так же часто, как и недостаточные, т.е. будет иметь место их взаимная компенсация.

Из правил округления имеется существенное исключение: при округлении погрешностей последняя сохраняемая цифра увеличивается на единицу, если старшая отбрасываемая цифра 3 или больше 3.

Имея результаты измерений, можно определить верные, сомнительные и неверные цифры. Разряд сомнительной цифры совпадает с разрядом первой значащей цифры погрешности. Цифры, стоящие слева от сомнительной, называют верными, а стоящие справа от сомнительной - неверными. Неверные цифры должны быть отброшены как в исходных данных, так и в окончательном результате расчета.

При округлении пользуются понятием о значащих цифрах. Все цифры числа, начиная с первой слева, отличной от нуля, до пос­ледней (может быть и нуль), называются значащими цифрами. К значащим цифрам относятся все верные и сомнительные цифры. К незначащим цифрам относятся: 1) ну­ли в начале числа, определяющие разряды десятичных дробей в числах, меньших единицы; 2) нули в конце числа, заменившие цифры, отброшенные после округления; 3) неверные цифры, если они по каким-либо причинам не отброшены.



На­пример, числа 0.002583 0.00003, 0.0258 0.0002, 258 2 содержат по 3 значащие цифры. В числе 2547 все числа значащие, так как ошибка не указана.

При сложении и вычитании округление всех чисел производит­ся по правилам 1-3 до разряда на единицу меньшего, чем разряд наименее точного числа. В результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим числом десятичных знаков:

23.2 + 0.442 + 7.247 »23.2 + 0.44 + 7.25 = 30.89 » 30.9.

При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр:

30.9 1.8394 » 30.9 1.84 = 56.856 » 56.9,

56.9 : 2.412 » 56.9 : 2.41 = 23.609 » 23.6.

При возведении в степень в результате следует сохранять столько значащих цифр, сколькоих имеет возводимое в степень приближенное число:

(11.38)2 = 129.5044 » 129.5.

При извлечении корня в результате следует сохранять столь­ко значащих цифр, сколько их имеет подкоренное (приближенное) число:

=1.724 » 1.72 .

При нахождении логарифма приближенного числа нужно брать из таблиц столько знаков, сколько верных знаков содержит дан­ное число:

lg77.23 » 2.8878 » 2.888 .

Примечание. При вычислении промежуточных результатов сле­дует брать на одну цифру больше, чем указано в округлении при выполнении математических действий над числами. В окончательном результате эта "запасная" цифра отбрасывается. Приведенный ни­же пример поясняет сказанное:

Значение физической величины округляется до первой сомни­тельной цифры. Все цифры, стоящие после сомнительной, отбрасы­ваются. Абсолютная ошибка округляется до одной значащей цифры, относительная ошибка - до двух значащих цифр.

Пример. Путем измерений и математических расчетов было по­лучено, что для объема некоторого тела имеют место следующие числа (см. с. 13: Вычисление абсолютной и относительной ошибок измерений):

V = 43.235 м3; DV = ± 0.423 м3.

Оказалось, что сомнительной цифрой при вычислении объема является 2. Тогда результат можно записать в следующем виде:

V= (43.2 ± 0.4) м3; EV = 100% = 0.92%.


 

Промахи, систематические и случайные погрешности измерений

Истинное значение физической величины абсолютно точно определить нельзя. Измерение тел, предметов или любой физической величины всегда производится с той или иной степенью точности, т.е. с той или иной степенью приближения к истинному значению иско­мой величины. Если указываем, что высота дерева 2 м 56 см, а измерена она с точностью до 1 см, то это будет означать, что отклонение найденной высоты от истинной не превышает 1 см.

При измерении физических величин под действием самых разнообразных причин возникают погрешности измерения. Все погрешности принято подразделять на систематические, случайные и промахи (ошибки).

Промахи

Это наиболее распространенная причина ошибок. Она возникает по вине экспериментатора, сделавшего неверный отсчет, неверно записавшего результат измерения, допустившего ошибку при вычислении. К промахам, например, относятся неточно установленный нуль секундомера или нониуса микрометра, неправильная установка самого прибора (вер­тикальная вместо горизонтальной или наоборот), неразборчивая или небрежная запись в черновиках, а следовательно, и непра­вильное переписывание данных при составлении отчета дома и т.п.

Эта ошибка бывает значительно больше погрешностей других измерений. Если ошибка допущена в одном измерении из нескольких, сделанных верно, то, сравнивая числовые значения полученных результатов или их абсолютных погрешностей, ее легко обнаружить. Результат, полученный ошибочно, резко отличается от результатов других измерений, а абсолютная погрешность имеет значение, значительно превышающее абсолютные погрешности других измерений. Эта ошибка должна быть исключена из результатов измерений.



<== предыдущая лекция | следующая лекция ==>
Теорема | Систематические погрешности


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.218 сек.