русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Тема 2.3. Двойственный симплекс-метод.


Дата добавления: 2015-09-15; просмотров: 1787; Нарушение авторских прав


Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов ,составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс–метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными). Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции

(54)

при условиях

(55)

(56)

где

и среди чисел имеются отрицательные.

В данном случае есть решение системы линейных уравнений (55). Однако это решение не является планом задачи (54) – (56), так как среди его компонент имеются отрицательные числа.

Поскольку векторы единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа Таким образом, можно найти

Определение 14.Решение системы линейных уравнений (55), определяемое базисом , называется псевдопланом задачи (54) – (56), если для любого

Теорема 11.Если в псевдоплане , определяемом базисом , есть хотя бы одно отрицательное число такое, что все , то задача (54) – (56) вообще не имеет планов.

Теорема 12.Если в псевдоплане , определяемом базисом , имеются отрицательные числа такие, что для любого из них существуют числа aij<0, то можно перейти к новому псевдоплану, при котором значение целевой функции задачи (54) – (56) не уменьшится.

Сформулированные теоремы дают основание для построения алгоритма двойственного симплекс-метода.



Пусть – псевдоплан этой задачи. На основе исходных данных составляют симплекс-таблицу (табл. 15), в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54) – (56), поскольку, по предположению, все . Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс–таблицы к другой до тех пор, пока из столбца вектора не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)–й строки, т.е. для любого

Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут какое–нибудь одно из них: пусть это число bl. Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор Pl. Чтобы определить, какой вектор следует ввести в базис, находим , где

Пусть это минимальное значение принимается при , тогда в базис вводят вектор Рr. Число является разрешающим элементов. Переход к новой симплекс–таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i–й строке симплекс–таблицы (табл. 15) в столбце вектора Р0 стоит отрицательное число bi,а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.

Таким образом, отыскание решения задачи (54) – (56) двойственным симплекс-методом включает следующие этапы:

1. Находят псевдоплан задачи.

2. Проверяют этот псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.

3. Выбирают разрешающую строку с помощью определения наибольшего по абсолютной величине отрицательного числа столбца вектора Р0 и разрешающий столбец с помощью нахождения наименьшего по абсолютной величине отношения элементов (m+1)–и строки к соответствующим отрицательным элементам разрешающей строки.

4. Находят новый псевдоплан и повторяют все действия начиная с этапа 2.

Таблица 15

Пример 17.

Найти максимальное значение функции при условиях

Решение. Запишем исходную задачу линейного программирования в форме основной задачи: найти максимум функции при условиях

Умножим второе и третье уравнения системы ограничений последней задачи на –1 и перейдем к следующей задаче: найти максимум функции

(57)

при условиях

(58)

(59)

Составим для последней задачи двойственную задачу. Такой является задача, в результате решения которой требуется найти минимальное значение функции

(60)

при условиях

(61)

(62)

Выбрав в качестве базиса векторы и , составим симплексную таблицу (табл. 16) для исходной задачи (57) – (59).

Таблица 16

i Базис Сб Р0
        P1 P2 P3 p4 p5
p3 P4 p5 –4 –6 –1 –1 –2

Из этой таблицы видим, что планом двойственной задачи (57) – (59) является . При этом плане Так как в столбце вектора Р0 таблица 16 имеются два отрицательных числа (–4 и –6), а в 4–й строке отрицательных чисел нет, то в соответствии с алгоритмом двойственного симплекс–метода переходим к новой симплекс–таблице. (В данном случае это можно сделать, так как в строках векторов Р4и Р5 имеются отрицательные числа. Если бы они отсутствовали, то задача была бы неразрешима. Вектор, исключаемый из базиса, определяется наибольшим по абсолютной величине отрицательным числом, стоящим в столбце вектора Р0. В данном случае это число –6. Следовательно, из базиса исключаем вектор Р5. Чтобы определить, какой вектор необходимо ввести в базис, находим где Имеем

Значит, в базис вводим вектор P2. Переходим к новой симплекс–таблице (табл. 17).

Таблица 17

i Базис Сб Р0
        P1 P2 P3 p4 p5
p3 P4 p2 –7 1/2 –3/2 1/2 1/2 1/2 1/2 –1/2 1/2

Из этой таблицы видно, что получен новый план двойственной задачи При этом плане значение ее линейной формы равно Таким образом, с помощью алгоритма двойственного симплекс–метода произведен упорядоченный переход от одного плана двойственной задачи к другому.

Так как в столбце вектора Р0 таблицы 17 стоит отрицательное число –7, то рассмотрим элементы 2–й строки. Среди этих чисел есть одно отрицательное –3/2. Если бы такое число отсутствовало, то исходная задача была бы неразрешима. В данном случае переходим к новой симплекс-таблице (табл. 18).

Таблица 18

i Базис Сб Р0
        P1 P2 P3 p4 p5
p3 P1 p2 8/3 14/3 2/3 32/3 1/3 –2/3 1/3 1/3 2/3 –1/3 –1/3 2/3

Как видно из таблицы 18, найдены оптимальные планы исходной и двойственной задач. Ими являются и .

При этих планах значения линейных форм исходной и двойственной задач равны между собой:

Пример 18.

Найти максимальное значение функции при условиях

Решение. Умножая первое и третье уравнения системы ограничений задачи на –1, в результате приходим к задаче нахождения максимального значения функции при условиях

Взяв в качестве базиса векторы Р3, Р4 и Р5, составляем симплекс-таблицу (табл. 19).

Таблица 19

i Базис Сб Р0
        P1 P2 P3 p4 p5
p3 P4 p5 –12 –18 –3 –1

В 4-й строке таблице 19 нет отрицательных чисел. Следовательно, если бы в столбце вектора Р0 не было отрицательных чисел, то в таблице 19 был бы записан оптимальный план. Поскольку в указанном столбце отрицательные числа имеются и такие же числа содержатся в соответствующих строках, переходим к новой симплекс–таблице (таблица 20). Для этого исключим из базиса вектор Р5 и введем в базис вектор Р1. В результате получим псевдоплан X=(6;0;-24;4)

Таблица 20

i Базис Сб Р0
        P1 P2 P3 p4 p5
p3 P4 p1 –24 1/3 8/3 –2/3 2/3 1/3 –1/3

Так как в строке вектора Р3 нет отрицательных чисел, то исходная задача не имеет решения.

 



<== предыдущая лекция | следующая лекция ==>
Тема 2.2. Симплекс-метод. | НАСТОЯЩЕЕ НЕОПРЕДЕЛЕННОЕ ВРЕМЯ (THE PRESENT INDEFINITE TENSE)


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.