русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Характеристики моделей систем.


Дата добавления: 2013-12-23; просмотров: 2592; Нарушение авторских прав


Стадии разработки моделей. На базе системного подхода может быть предложена и некоторая последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.

На стадии макропроектирования на основе данных о реальной системе S и внешней среде Е строится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S. Построив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позволяет реализовать возможности модели по воспроизведению отдельных сторон функционирования реальной системы S.

Стадия микропроектирования в значительной степени зависит от конкретного типа выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечений системы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы S.

Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного подхода:

1) пропорционально-последовательное продвижение по этапам и направлениям создания модели;

2) согласование информационных, ресурсных, надежностных и других характеристик;

3) правильное соотношение отдельных уровней иерархии в системе моделирования;

4) целостность отдельных обособленных стадий построения модели.

Модель М должна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длительное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели. Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функци­онирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функциониро­вания реальной системы S.



1. Цель функционирования, которая определяет степень целенаправленности поведения модели М. В этом случае модели могут быть разделены на одноцелевые, предназначенные для решения одной задачи, и многоцелевые, позволяющие разрешить или рассмотреть ряд сторон функционирования реального объекта.

2. Сложность, которую, учитывая, что модель М является совокупностью отдельных элементов и связей между ними, можно оценить по общему числу элементов в системе и связей между ними.

3. Целостность, указывающая на то, что создаваемая модель М является одной целостной системой S(M), включает в себя большое количество составных частей (элементов), находящихся в сложной взаимосвязи друг с другом.

4. Неопределенность, которая проявляется в системе: по состоянию системы, возможности достижения поставленной цели, методам, решения задач, достоверности исходной информации и т. д. Основной характеристикой неопределенности служит такая мера информации, как энтропия, позволяющая в ряде случаев оценить количество управляющей информации, необходимой для достижения заданного состояния системы. При моделировании основная цель — получение требуемого соответствия модели реальному объекту и в этом смысле количество управляющей информации в модели можно также оценить с помощью энтропии и найти то предельное минимальное количество, которое необходимо для получения требуемого результата с заданной достоверностью. Таким образом, понятие неопределенности, характеризующее большую систему, применимо к модели М и является одним из ее основных признаков.

5. Поведенческая страта, которая позволяет оценить эффективность достижения системой поставленной цели. В зависимости от наличия случайных воздействий можно различать детерминированные и стохастические системы, по своему поведению — непрерывные и дискретные и т. д. Поведенческая страта рассмотрения системы S позволяет применительно к модели М оценить эффективность построенной модели, а также точность и достоверность полученных при этом результатов. Очевидно, что поведение модели М не обязательно совпадает с поведением реального объекта, причем часто моделирование может быть реализовано на базе иного материального носителя [44].

6. Адаптивность, которая является свойством высокоорганизованной системы. Благодаря адаптивности удается приспособиться к различным внешним возмущающим факторам в широком диапазоне изменения воздействий внешней среды. Применительно в модели существенна возможность ее адаптации в широком спектре возмущающих воздействий, а также изучение поведения модели в изменяющихся условиях, близких к реальным. Надо отметить, что существенным может оказаться вопрос устойчивости модели к различным возмущающим воздействиям. Поскольку модель М — сложная система, весьма важны вопросы, связанные с ее сущест­вованием, т. е. вопросы живучести, надежности и т. д. [50, 54].

7. Организационная структура системы моделирования, которая во многом зависит от сложности модели и степени совершенства средств моделирования. Одним из последних достижений в области моделирования можно считать возможность использования имитационных моделей для проведения машинных экспериментов. Необходимы оптимальная организационная структура комплекса технических средств, информационного, математического и программного обеспечений системы моделирования S'(M), оптимальная организация процесса моделирования, поскольку следует обращать особое внимание на время моделирования и точность получаемых результатов.

8. Управляемость модели, вытекающая из необходимости обеспечивать управление со стороны экспериментаторов для получения возможности рассмотрения протекания процесса в различных условиях, имитирующих реальные. В этом смысле наличие многих управляемых параметров и переменных модели в реализованной системе моделирования дает возможность поставить широкий эксперимент и получить обширный спектр результатов [16, 45]. Управляемость системы тесно связана и со степенью автоматизации моделирования. В настоящее время получили применение системы моделирования, отличающиеся высокой степенью автоматизации процесса моделирования, когда наряду с программными средствами управления машинным моделированием используется возможность мультимедийного общения исследователя с процессом моделирования.

9. Возможность развития модели, которая исходя из современного уровня науки и техники позволяет создавать мощные системы моделирования S(M) для исследования многих сторон функционирования реального объекта. Однако нельзя при создании системы моделирования ограничиваться только задачами сегодняшнего дня. Необходимо предусматривать возможность развития системы мо­делирования как по горизонтали в смысле расширения спектра изучаемых функций, так и по вертикали в смысле расширения числа подсистем, т. е. созданная система моделирования должна позво­лять применять новые современные методы и средства. Естествен­но, что интеллектуальная система моделирования может функци­онировать только совместно с коллективом людей, поэтому к ней предъявляют эргономические требования [45, 50, 54].

 



<== предыдущая лекция | следующая лекция ==>
Принцип системного подхода в моделировании систем | Построение модели М.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.002 сек.