русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Родственные интерфейсы и преобразователи уровней


Дата добавления: 2013-12-23; просмотров: 1451; Нарушение авторских прав


В последовательном интерфейсе далеко не всегда используют двуполярные сигналы RS-232C - это неудобно, хотя бы из-за необходимости использования двуполярного питания приемопередатчиков. Сами микросхемы вышеописанных приемопередатчиков UART работают с сигналами логики ТТЛ или КМОП; такие же сигналы используются, например, и в сервисных портах винчестеров и других устройств. Многие устройства (в том числе карманные ПК и мобильные телефоны) имеют внешний последовательный интерфейс с уровнями низковольтной логики. Конечно, сигналы обычной логики не имеют столь высокой помехоустойчивости, как RS-232C, но не всегда это и требуется.

Для взаимного преобразования уровней интерфейса RS-232C и логики специально выпускаются буферные микросхемы приемников (с гистерезисом) и передатчиков двуполярного сигнала. При несоблюдении правил заземления и коммутации они обычно становятся первыми жертвами «пиротехнических» эффектов. Раньше их нередко устанавливали в «кроватки», что облегчало их замену. Цоколевка популярных микросхем формирователей сигналов RS-232C приведена на рис. 9. Часто буферные схемы входят прямо в состав интерфейсных БИС. Это удешевляет изделие, экономит место на плате, но в случае аварии оборачивается крупными финансовыми потерями. Вывести из строя интерфейсные микросхемы замыканием сигнальных цепей маловероятно: ток короткого замыкания передатчиков обычно не превышает 20 мА.

В специальных кабелях-адаптерах часто применяют преобразователи уровней фирмы Maxim и Sypex; они удобны тем, что содержат и приемники, и передатчики. Из широкого ассортимента этих преобразователей легко подобрать подходящий по количеству приемников и передатчиков, а также по питанию (однополярному, двуполярному, низковольтному).

 

Рис. 9. Формирователи сигналов RS-232C: а — приемник 1489 (а - вход RS-232,С ^ управление гистерезисом (ТТЛ), Y - выход ТТЛ); б - передатчик 1488 (А, В - входы ТТЛ, Y - выход RS-232, VDD = +12 В, VEE = -12 В); в – таблица состояния выходов передатчика (*1 В - логическая единица)



Когда требуется большая помехоустойчивость (дальность и скорость передачи), применяют иные электрические варианты последовательных интерфейсов: RS-422A (V.11, Х.27), RS-423A (V.10, Х.26), RS-485. На рис. 10 приведены схемы соединения приемников и передатчиков, а также показаны ограничения на длину линии (L) и максимальную скорость передачи данных (V). Несимметричные линии интерфейсов RS-232C и RS-423A имеют самую низкую защищенность от синфазной помехи, хотя дифференциальный вход приемника RS-423A позволяет в какой-то мере исправить ситуацию. Лучшие параметры имеют интерфейсы RS-422A и RS-485, работающие на симметричных линиях связи. В них для передачи каждого сигнала используются дифференциальные приемопередатчики с отдельной (витой) парой проводов для каждой сигнальной цепи.

 

Рис. 10. Стандарты последовательных интерфейсов

Интерфейсы EIA-RS-422 (ITU-T V.ll, X.27) и EIA-RS-485 (ISO 8482) используют симметричную передачу сигнала и допускают как двухточечную, так и шинную топологию соединений. В них информативной является разность потенциалов между проводниками А и В. Если на входе приемника UA-UB>0,2 В (А положи-тельнее В) — состояние «выключено» (space), UA-UB<-0,2 В (А отрицатель¬нее В) — состояние «включено» (mark). Диапазон |UA-UB|<0,2 В является зоной нечувствительности (гистерезис), защищающей от воздействия помех. На выхо¬дах передатчика сигналы UA и UB обычно переключаются между уровнями 0 и +5 В (КМОП) или +1 и +4 В (ТТЛ), дифференциальное выходное напряжение долж¬но лежать в диапазоне 1,5-5 В. Выходное сопротивление передатчиков 100 Ом. Интерфейсы электрически совместимы между собой, хотя и имеют некоторые различия в ограничениях. Принципиальное отличие передатчиков RS-485 — воз¬можность переключения в третье состояние. Передатчики RS-422/485 совместимы с приемниками RS-423. Основные параметры интерфейсов приведены в табл. 6, топологию соединений иллюстрирует рис. 11.

Чтобы увеличить число узлов, можно повысить входное сопротивление приемников, но при этом снижается допустимая скорость или максимально возможная дальность передачи. Максимальная скорость передачи на коротких расстояниях (до 10 м) ограничивается быстродействием передатчиков (достижима частота 25 МГц). На средних расстояниях ограничение определяется емкостью кабеля (1200 бит/с - 25 нФ, 9600 бит/с - 30 нФ, 115 кбит/с -250 пФ). Максимальная дальность (1200 м) ограничена сопротивлением петли постоянному току.

Таблица 6. Параметры интерфейсов RS-422 и RS-485

Параметр RS-422   RS-485  
Порог срабатывания, |UA-UB|,В срабатывания, |UA-UB|,В 0,2 0,2
Допустимое напряжение синфазной помехи, В1 -6,8...+6,8 -6,8...+11,8
Допустимое напряжение на входах, В1 -7...+7 -7...+12
Входное сопротивление приемника, кОм  
Минимальное сопротивление нагрузки передатчика, Ом  
Максимальное число узлов   1 передатчик +10 приемников 32 (передатчиков, приемников или их комбинаций)
Максимальная длина, м 1200 (100 кбит/с) 12(10Мбит/с) 1200 (100 кбит/с) 12(10Мбит/с)
Терминаторы, R=100Ом На дальнем конце от передатчика На обоих концах
Ток короткого замыкания, мА   <150Ha шинуGND <250 на шину с потенциалом -7...+12 Вили между проводами А и В

1 - Напряжение измеряется относительно «схемной земли» узла.

а б в

Рис. 11. Топология интерфейсов: а - RS-422, б - RS-485 четырехпроводный, в - RS-485 двухпроводный

Интерфейс RS-485 может быть в двух версиях: двухпроводной и четырехпроводной. Четырехпроводная версия (рис. 11, б) выделяет задающий узел (master), передатчик которого работает на приемники всех остальных. Передатчик задающего узла всегда активен — переход в третье состояние ему не нужен. Передатчики остальных ведомых (slave) узлов должны иметь тристабильные выходы, они объединяются на общей шине с приемником ведущего узла. В двухпроводной версии (рис. 11, в) все узлы равноправны.

В вырожденном случае — при двухточечном соединении — интерфейсы RS-485 и RS-422 эквивалентны, и третье состояние не используется.

Для определенности состояния покоя шины RS-485, когда нет активных передатчиков, на линию устанавливают активные терминаторы, «растягивающие» потенциалы проводов. В покое провод В должен иметь более положительный потенциал, чем А.

При многоточечном соединении необходимо организовать метод доступа к среде передачи. Чаще всего используют полинг (polling) - опрос готовности к передаче, выполняемый ведущим устройством, или передачу права доступа в соответствии с определенным (установленным) регламентом. Иногда используют и методы случайного доступа (аналогично Ethernet).

Дифференциальный вход интерфейсов защищает от действия помех, но при этом должно осуществляться соединение «схемных земель» устройств между собой и с шиной заземления. Для соединения устройств между собой используют третий провод интерфейса (можно и экран). Для того чтобы по третьему проводу не протекал большой ток, выравнивающий «земляные потенциалы», в его цепь включают резисторы (рис. 12).

Интерфейс RS-422 часто используется для подключения периферийных устройств (например, принтеров). Интерфейс RS-485 популярен в качестве шин устройств промышленной автоматики.

Интерфейс «токовая петля» для представления сигнала использует не напряжение, а ток в двухпроводной линии, соединяющей приемник и передатчик.

Логической единице (состоянию «включено») соответствует протекание тока 20 мА, а логическому нулю — отсутствие тока. Такое представление сигналов для вышеописанного формата асинхронной посылки позволяет обнаружить обрыв линии — приемник заметит отсутствие стоп-бита (обрыв линии действует как постоянный логический нуль).

Рис. 12. Соединение «схемных земель» для интерфейсов RS-422 и RS-485

Токовая петля обычно предполагает гальваническую развязку входных цепей приемника от схемы устройства. При этом источником тока в петле является передатчик (этот вариант называют активным передатчиком). Возможно и питание от приемника (активный приемник), при этом выходной ключ передатчика может быть также гальванически развязан с остальной схемой передатчика. Существуют упрощенные варианты без гальванической развязки, но это уже вырожденный случай интерфейса. Заметим, что интерфейс MIDI с «классической» токовой петлей несовместим.

Токовая петля с гальванической развязкой позволяет передавать сигналы на расстояния до нескольких километров, но при невысоких скоростях (выше 19 200 бит/с не используют, а на километровых расстояниях допустима скорость до 9600 бит/с и ниже). Допустимое расстояние определяется сопротивлением пары проводов и уровнем помех. Поскольку интерфейс требует пары проводов для каждого сигнала, обычно используют только два сигнала последовательного интерфейса (4-проводная линия). В случае двунаправленного обмена применяются только сигналы передаваемых и принимаемых данных, а для управления потоком используется программный метод XON/XOFF. Если двунаправленный обмен не требуется, применяют одну линию данных, а для управления потоком обратная линия задействуется для сигнала CTS (аппаратный протокол) или встречной линии данных (программный протокол). При надлежащем ПО одной токовой петлей можно обеспечить двунаправленную полудуплексную связь двух устройств. При этом каждый приемник «слышит» как сигналы передатчика на противоположной стороне канала, так и сигналы своего передатчика. Они расцениваются коммуникационными пакетами просто как эхо-сигнал. Для безошибочного приема передатчики должны работать поочередно.

Токовая петля позволяет использовать выделенные физические линии без модемов, но на малых скоростях. Иногда по токовой петле подключают терминалы с интерфейсом RS-232C, если не хватает штатной длины интерфейса или требует¬я гальваническая развязка. Преобразовать сигналы RS-232C в токовую петлю несложно — на рис. 13 приведена простейшая схема преобразователя применительно к подключению терминала. Для получения двуполярного сигнала, требуемого для входных сигналов СОМ-порта, применяется питание от интерфейса. Схема может быть усложнена для защиты оптронов от перегрузки и улучшения формы потенциальных сигналов. Допустимая скорость определяется и быстродействием применяемых оптронов (скорость 9600 бит/с достигается практически на любых оптронах).

 

Рис. 13. Преобразование интерфейса RS-232C в «токовую петлю»



<== предыдущая лекция | следующая лекция ==>
Интерфейс RS-232C | Программный интерфейс SPI


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.