русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Сегменты


Дата добавления: 2013-12-23; просмотров: 3952; Нарушение авторских прав


Псевдокоманды определения переменных

Директивы сегментации. Описание типов данных ассемблера.

Псевдокоманда — это директива ассемблера, которая приводит к включению данных или кода в программу, хотя сама она никакой команде процессора не соответствует. Псевдокоманды определения переменных указывают ассемблеру, что в соответствующем месте программы располагается переменная, определяют тип переменной (байт, слово, вещественное число и т.д.), задают ее начальное значение и ставят в соответствие переменной метку, которая будет использоваться для обращения к этим данным. Псевдокоманды определения данных записываются в общем виде следующим образом:

имя_переменной d* значение

где D* — одна из нижеприведенных псевдокоманд:

DB — определить байт;

DW — определить слово (2 байта);

DD — определить двойное слово (4 байта);

DF — определить 6 байт (адрес в формате 16-битный селектор: 32-битное смещение);

DQ — определить учетверенное слово (8 байт);

DT — определить 10 байт (80-битные типы данных, используемые FPU).

Поле значения может содержать одно или несколько чисел, строк символов (взятых в одиночные или двойные кавычки), операторов ? и DUP, разделенных запятыми. Все установленные таким образом данные окажутся в выходном файле, а имя переменной будет соответствовать адресу первого из указанных значений. Например, набор директив

text_string db 'Hello world!'number dw 7table db 1,2,3,4,5,6,7,8,9,0Ah,0Bh,0Ch,0Dh,0Eh,0Fhfloat_number dd 3.5e7

заполняет данными 33 байта. Первые 12 байт содержат ASCII-коды символов строки «Hello world!», и переменная text_string указывает на первую букву в этой строке, так что команда

mov al,text_string

считает в регистр AL число 48h (код латинской буквы H). Если вместо точного значения указан знак ?, переменная считается неинициализированной и ее значение на момент запуска программы может оказаться любым. Если нужно заполнить участок памяти повторяющимися данными, используется специальный оператор DUP, имеющий формат счетчик DUP (значение). Например, вот такое определение:



table_512w dw 512 dup(?)

создает массив из 512 неинициализированных слов, на первое из которых указывает переменная table_512w. В качестве аргумента в операторе DUP могут выступать несколько значений, разделенных запятыми, и даже дополнительные вложенные операторы DUP.

Каждая программа, написанная на любом языке программирования, состоит из одного или нескольких сегментов. Обычно область памяти, в которой находятся команды, называют сегментом кода, область памяти с данными — сегментом данных и область памяти, отведенную под стек, — сегментом стека. Разумеется, ассемблер позволяет изменять устройство программы как угодно — помещать данные в сегмент кода, разносить код на множество сегментов, помещать стек в один сегмент с данными или вообще использовать один сегмент для всего.

Сегмент программы описывается директивами SEGMENT и ENDS.

имя_сегмента segment readonly выравн. тип разряд 'класс' ...имя_сегмента ends

Имя сегмента — метка, которая будет использоваться для получения сегментного адреса, а также для комбинирования сегментов в группы.

Все пять операндов директивы SEGMENT необязательны.

READONLY. Если этот операнд присутствует, MASM выдаст сообщение об ошибке на все команды, выполняющие запись в данный сегмент. Другие ассемблеры этот операнд игнорируют.

Выравнивание. Указывает ассемблеру и компоновщику, с какого адреса может начинаться сегмент. Значения этого операнда:

BYTE — с любого адреса;

WORD — с четного адреса;

DWORD — с адреса, кратного 4;

PARA — с адреса, кратного 16 (граница параграфа);

PAGE — с адреса, кратного 256.

По умолчанию используется выравнивание по границе параграфа.

Тип. Выбирает один из возможных типов комбинирования сегментов:

тип PUBLIC (иногда используется синоним MEMORY) означает, что все такие сегменты с одинаковым именем, но разными классами будут объединены в один;

тип STACK — то же самое, что и PUBLIC, но должен использоваться для сегментов стека, потому что при загрузке программы сегмент, полученный объединением всех сегментов типа STACK, будет использоваться как стек;

сегменты типа COMMON с одинаковым именем также объединяются в один, но не последовательно, а по одному и тому же адресу, следовательно, длина суммарного сегмента будет равна не сумме длин объединяемых сегментов, как в случае PUBLIC и STACK, а длине максимального. Таким способом иногда можно формировать оверлейные программы;

тип AT — выражение указывает, что сегмент должен располагаться по фиксированному абсолютному адресу в памяти. Результат выражения, использующегося в качестве операнда для AT, равен этому адресу, деленному на 16. Например: segment at 40h — сегмент, начинающийся по абсолютному адресу 0400h. Такие сегменты обычно содержат только метки, указывающие на области памяти, которые могут потребоваться программе;

PRIVATE (значение по умолчанию) — сегмент такого типа не объединяется с другими сегментами.

Разрядность. Этот операнд может принимать значения USE16 и USE32. Размер сегмента, описанного как USE16, не может превышать 64 Кб, и все команды и адреса в этом сегменте считаются 16-битными. В этих сегментах все равно можно применять команды, использующие 32-битные регистры или ссылающиеся на данные в 32-битных сегментах, но они будут использовать префикс изменения разрядности операнда или адреса и окажутся длиннее и медленнее. Сегменты USE32 могут занимать до 4 Гб, и все команды и адреса в них по умолчанию 32-битные. Если разрядность сегмента не указана, по умолчанию используется USE16 при условии, что перед директивой .MODEL не применялась директива задания допустимого набора команд .386 или старше.

Класс сегмента — это любая метка, взятая в одинарные кавычки. Все сегменты с одинаковым классом, даже сегменты типа PRIVATE, будут расположены в исполняемом файле непосредственно друг за другом.

Для обращения к любому сегменту следует сначала загрузить его сегментный адрес (или селектор в защищенном режиме) в какой-нибудь сегментный регистр. Если в программе определено много сегментов, удобно объединить несколько сегментов в группу, адресуемую с помощью одного сегментного регистра:

имя_группы group имя_сегмента...

Операнды этой директивы — список имен сегментов (или выражений, использующих оператор SEG), которые объединяются в группу. Имя группы теперь можно применять вместо имен сегментов для получения сегментного адреса и для директивы ASSUME.

assume регистр:связь...

Директива ASSUME указывает ассемблеру, с каким сегментом или группой сегментов связан тот или иной сегментный регистр. В качестве операнда «связь» могут использоваться имена сегментов, имена групп, выражения с оператором SEG или слово «NOTHING», означающее отмену действия предыдущей ASSUME для данного регистра. Эта директива не изменяет значений сегментных регистров, а только позволяет ассемблеру проверять допустимость ссылок и самостоятельно вставлять при необходимости префиксы переопределения сегментов, если они необходимы.

Перечисленные директивы удобны для создания больших программ на ассемблере, состоящих из разнообразных модулей и содержащих множество сегментов. В повседневном программировании обычно используется ограниченный набор простых вариантов организации программы, известных как модели памяти.



<== предыдущая лекция | следующая лекция ==>
Синтаксис ассемблера | Проектирование модели реальной БД на примере создания


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.