русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Основы нечеткой логики


Дата добавления: 2013-12-23; просмотров: 2542; Нарушение авторских прав


Нечеткая логика (fuzzy logic)возникла как наиболее удобный способ построения сложными технологическими процессами, а также нашла применение в бытовой электронике, диагностических и других экспертных системах. Математический аппарат нечеткой логики впервые был разработан в США в середине 60-х годов прошлого века, активное развитие данного метода началось и в Европе.

Классическая логика развивается с древнейших времен. Ее основоположником считается Аристотель. Логика известна нам как строгая наука, имеющая множество прикладных применений: например, именно на положениях классической (булевой) логики основан принцип действия всех современных компьютеров. Вместе с тем классическая логика имеет один существенный недостаток - с ее помощью невозможно адекватно описать ассоциативное мышление человека. Классическая логика оперирует только двумя понятиями: ИСТИНА и ЛОЖЬ (логические 1 или 0), и исключая любые промежуточные значения. Все это хорошо для вычислительных машин, но попробуйте представить весь окружающий вас мир только в черном и белом цвете, вдобавок исключив из языка любые ответы на вопросы, кроме ДА и НЕТ. В такой ситуации вам можно только посочувствовать.

Традиционная математика с ее точными и однозначными формулировками закономерностей также имеет в своей основе классическую логику. А поскольку именно математика, в свою очередь, представляет собой универсальный инструмент для описания явлений окружающего мира во всех естественных науках (физика, химия, биология и т. д.) и их прикладных приложениях (например, теория измерений, теория управления и т. д.), неудивительно все эти науки оперируют математически точными данными, такими как: «средняя скорость автомобиля на участке пути длиной 62 км равнялась 93 км/ч». Но мыслит ли в действительности человек такими категориями? Представим, что в вашей машине вышел из строя спидометр. Означает ли это, что отныне вы лишены возможности оценивать скорость вашего перемещения и не в состоянии ответить на вопросы типа «быстро ли ты доехал вчера домой?». Разумеется нет. Скорее всего вы скажете в ответ что-то вводе: «Да, довольно быстро». Собственно говоря, вы скорее всего ответите примерно в том же духе, даже и в том случае, если спидометр вашей машины был в полном порядке, поскольку, совершая поездки, не имеете привычки непрерывно отслеживать его показания в режиме реального времени. То есть, в своем естественном мышлении применительно к скорости мы склонны оперировать не точными значениями в км/ч или м/с, а приблизительными оценками типа: «медленно», «средне», «быстро» и бесчисленным множеством полутонов и промежуточных оценок: «тащился как черепаха», «катился, не торопясь», «не выбивался из потока», «ехал довольно быстро», «несся как ненормальный» и т. п.



Если попытаться выразить наши интуитивные понятия о скорости графически, то получится нечто вроде рисунка ниже.

 

 

Здесь по оси X отложены значения скорости в традиционной строгой математической записи, а по оси Y – т. н. функцию принадлежности (изменяется от 0 до 1) точного значения скорости к нечеткому множеству, обозначенному тем или иным значением лингвистической переменной «скорость»: очень низкая, низкая, средняя, высокая и очень высокая. Этих градаций (гранул) может быть меньше или больше. Чем больше гранулированность нечеткой информации, тем больше она приближается к математически точной оценке (не забудем, что и выраженная в традиционной форме измерительная информация всегда обладает некоторой погрешностью, а значит в определенном смысле также является нечеткой). Таким образом, например значение скорости 105 км/ч принадлежит к нечеткому множеству «высокая» со значением функции принадлежности 0.8, а к множеству «очень высокая» со значением 0.5.

Другой пример – оценка возраста человека. Часто мы не имеем абсолютно точной информации о возрасте того или иного знакомого нам человека и поэтому, отвечая на соответствующий вопрос, вынуждены давать нечеткую оценку типа: «ему лет 30» или «ему далеко за 60» и т. п. Особенно часто используются такие значения лингвистической переменной «возраст» как: «молодой», «средних лет», «старый» и т. п. На рисунке ниже приведен графически возможный вид нечеткого множества «возраст = молодой» (очевидно, с точки зрения человека, которому самому ну никак не больше 20 лет ;)

Нечеткие числа, получаемые в результате “не вполне точных измерений”, во многом похожи (но не тождественны! см. пример с двумя бутылками) распределениям теории вероятностей, но свободны от присущих последним недостатков: малое количество пригодных к анализу функций распределения, необходимость их принудительной нормализации, соблюдение требований аддитивности, трудность обоснования адекватности математической абстракции для описания поведения фактических величин. По сравнению с точными и, тем более, вероятностными методами, нечеткие методы измерения и управления позволяют резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличению быстродействия нечетких систем.

Как уже говорилось, принадлежность каждого точного значения к одному из значений лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным. Сейчас сформировалось понятие о так называемых стандартных функциях принадлежности (см. рисунок ниже).

Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.

Процесс построения (графического или аналитического) функции принадлежности точных значений к нечеткому множеству называется фаззификацией данных.



<== предыдущая лекция | следующая лекция ==>
Генетические операторы | Этап 1. Фаззификация (переход от четких значений переменных к нечетким). Выполняется человеком - разработчиком контроллера в процессе его создания.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.