русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Аналитическое и численное решения дифференциальных уравнений


Дата добавления: 2013-12-23; просмотров: 4919; Нарушение авторских прав


Модель колебаний сердечной мышцы.

К системе дифференциальных уравнений первой степени.

Переход от дифференциального уравнения высокой степени

В случаях, когда модель изучаемого процесса описывается ДУ степенью большей 1, удобно трансформировать его в систему ДУ первой степени. Именно такой стандартизованной формы требуют, например, многие математические пакеты для проведения операции численного решения ДУ (см. далее).

Напомним, что системой ДУ первой степени называется система вида:

К ней легко приводится ДУ степени n:

Приведение осуществляется путем замены переменных:

,

которая дает каноническую систему ДУ первой степени:

Рассмотрим пример. Модель колебаний сердечной мышцы (изменение ее длины y в продольном направлении) можно упрощенно описать ДУ следующего вида:

,

где p, q – постоянные коэффициенты, определяющие параметры периодического изменения возмущающего воздействия (мышечного напряжения), - угловая собственная (резонансная) частота колебаний сердечной мышцы.

Произведем замену переменных: . Получим:

Общее аналитическое решение данной системы в графическом виде будет иметь вид (подробно ход получения решения не приводится):

,

где A и B – постоянные коэффициенты.

График решения системы при начальных условиях имеет вид:

 

 

 

 

Аналитическим решением ДУ называется нахождение зависимостей его переменных от времени в виде явно заданной математической формулы.

Например, для модели Мальтуса таким аналитическим решением является формула , для модели Ферхюльста аналитическим решением является формула , а вот ДУ модели Вольтера-Лотка:

не имеют общего аналитического решения. То есть, иными словами, интегралы, возникающие в правой части выражений для и невозможно «взять», используя стандартные приемы аналитического интегрирования (см. курс высшей математики). Откуда же взялись приведенные в описании этой модели графики зависимостей переменных от времени и фазовые траектории? Они были получены путем численного решения приведенной системы ДУ.



В общем случае численное решение ДУ сводится к замене дифференциалов, входящих в его состав, малыми приращениями соответствующих переменных и нахождение решений получившегося алгебраического уравнения на интервале времени от 0 до любого заранее заданного . Рассмотрим применение простейшего метода численного решения – метода Эйлера для решения ДУ первого порядка .

Представим исходное ДУ в виде:

,

где - дискретность по времени, произвольно выбранная малая величина; ; i – шаг алгоритма.

Шаг 0. Задаем начальное условие и определяем .

Шаг 1. Вычисляем первые значения x и t по формулам:

;

.

Шаги 2 - n. Продолжаем вычисление x и t по формулам:

;

.

до тех пор пока

 

Аналогичным образом можно решать и системы ДУ первого порядка, к которым, как мы теперь знаем, можно свести ДУ любого порядка.

Точность численного решения при прочих равных условиях определяется выбранной величиной дискретности по времени . Чем меньше дискретность, тем точнее решение, но и тем больше шагов должен включать алгоритм. Именно по причине того, что алгоритмы численного решения ДУ требуют огромного количества элементарных вычислений (число шагов может составлять сотни и тысячи), для их практической реализации используют компьютеры. Широко используемые программы математического моделирования, как правило, имеют в своем составе стандартные функции численного решения ДУ, поэтому их пользователю нет нужды детально разбираться в тонкостях используемых алгоритмов – достаточно задать свои ДУ, начальные условия и интервал времени, на котором ищется решения. Все остальное программа сделает самостоятельно.

Простота использования описанных выше функций привела к тому, что создатели математических моделей в настоящее время обычно даже и не пытаются найти аналитическое решение разработанных ими ДУ, предпочитая во всех случаях решать их численно. Справедливости ради следует отметить, что абсолютное большинство ДУ, используемых в современном моделировании, не имеет аналитического решения в принципе.

Сказанное выше не отменяет необходимости при моделировании выполнять качественный анализ ДУ, в первую очередь путем исследования устойчивости стационарных состояний и типов поведения системы вблизи этих состояний.




<== предыдущая лекция | следующая лекция ==>
Системы дифференциальных уравнений. | Параметры случайной величины


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.