русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Системы счисления


Дата добавления: 2013-12-23; просмотров: 1243; Нарушение авторских прав


Совокупность приемов записи и наименования чисел называется системой счисления.

Числа записываются с помощью символов, и по количеству символов, используемых для записи числа, системы счисления подразделяются на позиционные и непозиционные. Если для записи числа используется бесконечное множество символов, то система счисления называется непозиционной. Примером непозиционной системы счисления может служить римская. Например, для записи числа один используется буква I, два и три выглядят как совокупности символов II, III, но для записи числа пять выбирается новый символ V, шесть – VI , десять - вводится символ X, сто – C, тысяча – M, и так далее. Бесконечный ряд чисел потребует бесконечного числа символов для записи чисел. Кроме того, такой способ записи чисел приводит к очень сложным правилам арифметики.

Позиционные системы счисления для записи чисел используют ограниченный набор символов, называемых цифрами, и величина числа зависит не только от набора цифр, но и от того, в какой последовательности записаны цифры, т.е. от позиции, занимаемой цифрой, например, 125 и 215. Количество цифр, используемых для записи числа, называется основанием системы счисления, в дальнейшем обозначим q.

В повседневной жизни мы пользуемся десятичной позиционной системой счисления, q=10, т.е. используется 10 цифр: 0 1 2 3 4 5 6 7 8 9.

Рассмотрим правила записи чисел в позиционной десятичной системе счисления. Числа от 0 до 9 записываются цифрами, для записи следующего числа цифры не существует, поэтому вместо 9 пишут 0, но левее нуля образуется еще один разряд, называемый старшим, где записывается (прибавляется) 1, в результате получается 10. Затем пойдут числа 11, 12, но на 19 опять младший разряд заполнится и мы его снова заменим на 0, а старший разряд увеличим на 1, получим 20. Далее по аналогии 30, 40 … 90 91 92… до 99. Здесь заполненными оказываются два разряда сразу, чтобы получить следующее число, мы заменяем оба на 0, а в старшем разряде, теперь уже третьем, поставим 1, т.е. 100, и т.д. до бесконечности, причем заметим, что при конечном числе цифр можно записать любое сколь угодно большое число. Заметим также, что производство арифметических действий в десятичной системе счисления весьма просто.



Число в позиционной системе счисления с основанием q может быть представлено в виде полинома по степеням q. Например, в десятичной системе число

123,45= 1*102+2*101+3*100+4*10-1+5*10-2

или в общем виде это правило запишется так

X(q)=xn-1qn-1+xn-2qn-2+…+x1q1+x0q0+x-1q-1+x-2q-2+…+x-mq-m

Здесь X(q) – запись числа в системе счисления с основанием q;

xi – натуральные числа меньше q, т.е. цифры;

n – число разрядов целой части;

m – число разрядов дробной части.

Записывая слева направо цифры числа, мы получим закодированную запись числа в q-ичной системе счисления:

X(q)=xn-1xn-2x1x0 , x-1x-2x-m

В информатике, вследствие применения электронных средств вычислительной техники, большое значение имеет двоичная система счисления, q=2 . На ранних этапах развития вычислительной техники арифметические операции с действительными числами производились в двоичной системе ввиду простоты их реализации в электронных схемах вычислительных машин. Например, таблица сложения и таблица умножения будут иметь по четыре правила,

0+0=0 0х0=0
0+1=1 0х1=0
1+0=1 1х0=0
1+1=10 1х1=1

А значит, для реализации поразрядной арифметики в компьютере, потребуются вместо двух таблиц по сто правил в десятичной системе счисления две таблицы по четыре правила в двоичной. Соответственно на аппаратном уровне вместо двухсот электронных схем – восемь.

Но запись числа в двоичной системе счисления длиннее записи того же числа в десятичной системе счисления в log210 раз (примерно в 3.3 раза). Это громоздко и не удобно для профессионального и для повседневного использования, так как нормальный объем человеческого внимания составляет примерно три – четыре объекта, т.е. удобно будет пользоваться такими системами счисления, в которых наиболее часто используемые числа (от единиц до тысяч) записывались бы одной – четырьмя цифрами. Как это будет показано ниже, перевод числа, записанного в двоичной системе счисления в восьмеричную и шестнадцатеричную очень сильно упрощается по сравнению с переводом из десятичной в двоичную. Запись же чисел в них в три раза короче для восьмеричной и в четыре для шестнадцатеричной системы, чем в двоичной, но длины чисел в десятичной, восьмеричной и шестнадцатеричной системах счисления будут различаться не намного. Поэтому, наряду с двоичной системой счисления, в информатике имеют хождение восьмеричная и шестнадцатеричная системы счисления.

Восьмеричная система счисления имеет восемь цифр: 0 1 2 3 4 5 6 7. Шестнадцатеричная - шестнадцать, причем первые 10 цифр совпадают по написанию с цифрами десятичной системы счисления, а для обозначения оставшихся шести цифр применяются большие латинские буквы, т.е. для шестнадцатеричной системы счисления получим набор цифр: 0 1 2 3 4 5 6 7 8 9 A B C D E F.

Если из контекста не ясно, к какой системе счисления относится запись, то основание системы записывается после числа в виде нижнего индекса. Например, одно и то же число 231, записанное в десятичной системе, запишется в двоичной, восьмеричной и шестнадцатеричной системах счисления следующим образом:

231(10)=11100111(2)=347(8)=E7(16)

Запишем начало натурального ряда в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

 

десятичная двоичная восьмеричная шестнадцатеричная
A
B
C
D
E
F

 



<== предыдущая лекция | следующая лекция ==>
Двоичный код | Представление чисел в двоичном коде


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.