русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Упражнение 5. Решение системы линейных уравнений Методом Крамера


Дата добавления: 2014-12-02; просмотров: 832; Нарушение авторских прав


Дана линейная система , где – матрица коэффициентов, – столбец (вектор) свободных членов, – столбец (вектор) неизвестных.

По методу Крамера вычисляется по формуле , где - определители матрицы , - определитель исходной матрицы т.е матрицы А. получается из матрицы A заменой i-того столбца столбцом "b"-свободных членов. Это определяет метод реализации алгоритма в Excel.

Например, нужно решить систему линейных уравнений с 3 неизвестными, с коэффициентами и с правой частью .

  1. Вводим матрицы A, b, затем копируем матрицу A три раза (начальная заготовка для матрицы ) рис.1.
  B C D E F G H I J
          510 000
A   Det(A)=   В 180 000
          480 000
                 
           
A1   Det(A1)=   X1=  
           
                 
           
A2   Det(A2)=   X2=  
           
                 
           
A3   Det(A3)=   X3=  
           
                 

Рис. 1



2. Затем копируем столбец b и вставляем его в А1 в 1 столбец, в А2 во 2 столбец, в А3 - в 3 столбец

3. Вычислите определители полученных матриц в ячейки Н7, Н11, Н15.

4. После определения определителей матриц А1, А2, А3 легко можно получить Х1 по формуле , и так для Х2, Х3

Задания для самостоятельной работы:

1. Решить системы линейных уравнений а) Методом Крамера

2. Вычислите б) квадратичную форму .

 

Таблица 1.

Задание № 1 Матрица   Задание №1 Матрица
а) б)   а) б)
а) б)   а) б)
а) бв)          

 

3.Найдите значение сложных выражений , где а, x, y – вектор из n компонентов, и – матрица размерности .

Таблица 2.

Выражения Вектор а, x, y Матрица ,

Контрольные вопросы:

  1. Что значит транспонировать матрицу?
  2. С помощью каких функций сумм вычисляются сложные выражения?
  3. В чем заключается метод Крамера?
  4. При каком условии система линейных уравнений имеет решение?
  5. Что выполняет функция СУММКВ?

 



<== предыдущая лекция | следующая лекция ==>
Упражнение 4. Вычисление сложных выражений. | Лабораторная работа №14


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.29 сек.