русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Синицын И.В., Терновсков В.Б. 20 страница


Дата добавления: 2013-12-23; просмотров: 1164; Нарушение авторских прав


5. Основные процессы жизненного цикла - Primary Processes

5.1 Заказ - Acqusition

5.2 Поставка - Supply

5.3 Разработка - Development

5.4 Эксплуатация - Operation

5.5 Сопровождение - Maintenance

6. Вспомогательные процессы жизненного цикла - Supporting Processes

6.1 Документирование - Documentation

6.2 Управление конфигурацией - Configuration Management

6.3 Обеспечение качества - Quality Assurance

6.4 Верификация - Verification

6.5 Аттестация - Validation

6.6 Совместный анализ - Joint Review

6.7 Аудит - Audit

6.8 Решение проблем - Problem Resolution

7. Организационные процессы жизненного цикла - Organizational Processes

7.1 Управление - Management

7.2 Создание инфраструктуры - Infrastructure

7.3 Усовершенствование - Improvement

7.4 Обучение - Training

Стандарт определяет высокоуровневую архитектуру жизненного цикла. Жизненный цикл начинается с идеи или потребности, которую необходимо удовлетворить с использованием программных средств (может быть и не только их). Архитектура строится как набор процессов и взаимных связей между ними. Например, основные процессы жизненного цикла обращаются к вспомогательным процессам, в то время, как организационные процессы действуют на всем протяжении жизненного цикла и связаны с основными процессами.

Дерево процессов жизненного цикла представляет собой структуру декомпозиции жизненного цикла на соответствующие процессы (группы процессов). Декомпозиция процессов строится на основе двух важнейших принципов , определяющих правила разбиения (partitioning) жизненного цикла на составляющие процессы. Эти принципы:

Модульность

• задачи в процессе являются функционально связанными;

• связь между процессами - минимальна;

• если функция используется более, чем одним процессом, она сама является процессом;

• если Процесс Y используется Процессом X и только им, значит Процесс Y принадлежит (является его частью или его задачей) Процессу X, за исключением случаев потенциального использования Процесса Y в других процессах в будущем.



Ответственность

• каждый процесс находится под ответственностью конкретного лица (управляется и/или контролируется им), определенного для заданного жизненного цикла, например, в виде роли в проектной команде;

• функция, чьи части находятся в компетенции различных лиц, не может рассматриваться как самостоятельный процесс.

Общая иерархия (декомпозиция) составных элементов жизненного цикла выглядит следующим образом:

• группа процессов

о процессы

■ работы

• задачи

В общем случае, разбиение процесса базируется на широко распространенном PDCA-цикле:

• “P” - Plan - Планирование

• “D” - Do - Выполнение

• “C” - Check - Проверка

• “A” - Act - Реакция (действие)

Рассмотрим вкратце, какие работы составляют процессы жизненного цикла, помня, что полное определение работ, как и определение составляющих их задач, дано непосредственно в стандарте. Ниже приведен краткий обзор основных процессов жизненного цикла, явно демонстрирующий связь вопросов, касающихся непосредственно самой программной системы, с системными аспектами ее функционирования и обеспечения ее эксплуатации.

Основные процессы жизненного цикла (5)

Приобретение (5.1)

Процесс приобретения (как его называют в ГОСТ - “заказа”) определяет работы и задачи заказчика, приобретающего программное обеспечение или услуги, связанные с ПО, на основе контрактных отношений. Процесс приобретения состоит из следующих работ (названия ГОСТ 12207 даны в скобках, если предлагают другой перевод названий работ оригинального стандарта):

• Inititation - инициирование (подготовка)

• Request-for-proposal preparation - подготовка запроса на предложение (подготовка заявки на подряд)

• Contract preparation and update -подготовка и корректировка договора

• Supplier monitoring - мониторинг поставщика (надзор за поставщиком)

• Acceptance and completion - приемка и завершение (приемка и закрытие договора)

Все работы проводятся в рамках проектного подхода.

Поставка (5.2)

Процесс поставки, в свою очередь, определяет работы и задачи поставщика. Работы также проводятся с использованием проектного подхода. Процесс включает следующие работы:

• Inititation - инициирование (подготовка)

• Preparation of response - подготовка предложения (подготовка ответа)

• Contract - разработка контракта (подготовка договора)

• Planning - планирование

• Execution and control - выполнение и контроль

• Review and evaluation -проверка и оценка

• Delivery and completion - поставка и завершение (поставка и закрытие договора) Разработка (5.3)

Процесс разработки определяет работы и задачи разработчика. Процесс состоит из следующих работ:

• Process implementation - определение процесса (подготовка процесса)

• System requirements analysis - анализ системных требований (анализ требований к системе)

• System design - проектирование системы (проектирование системной архитектуры)

• Software requirements analysis - анализ программных требований (анализ требований к программным средствам)

• Software architectural design - проектирование программной архитектуры

• Software detailed design - детальное проектирование программной системы (техническое проектирование программных средств)

• Software coding and testing - кодирование и тестирование (программирование и тестирование программных средств)

• Software integration - интеграция программной системы (сборка программных средств)

• Software qualification testing - квалификационные испытания программных средств

• System integration - интеграция системы в целом (сборка системы)

• System qualification testing - квалификационные испытания системы

• Software installation - установка (ввод в действие)

• Software acceptance support - обеспечение приемки программных средств

Стандарт отмечает, что работы проводятся с использованием проектного подхода и могут пересекаться по времени, т.е. проводиться одновременно или с наложением, а также могут предполагать рекурсию и разбиение на итерации.

Эксплуатация (5.4)

Процесс разработки определяет работы и задачи оператора службы поддержки. Процесс включает следующие работы:

• Process implementation - определение процесса (подготовка процесса)

• Operational testing - операционное тестирование (эксплуатационные испытания)

• System operation - эксплуатация системы

• User support - поддержка пользователя

Сопровождение (5.5)

Процесс разработки определяет работы и задачи, проводимые специалистами службы сопровождения. Процесс включает следующие работы:

• Process implementation - определение процесса (подготовка процесса)

• Problem and modification analysis - анализ проблем и изменений

• Modification implementation - внесение изменений

• Maintenance review/acceptance - проверка и приемка при сопровождении

• Migration - миграция (перенос)

• Software retirement - вывод программной системы из эксплуатации (снятие с эксплуатации)

Важно понимать, что стандарт 12207 не определяет последовательность и разбиение выполнения процессов во времени, адресуя этот вопрос также работам по адаптации стандарта к конкретным условиям и окружению и применению выбранных моделей, практик, техник и т.п.

Адаптация стандарта

Адаптация стандарта* подразумевает применение требований стандарта к конкретному проекту или проектам, например, в рамках создания внутрикорпоративных регламентов ведения проектов программного обеспечения.

Адаптация включает следующие виды работ:

• Определение исходной информации для адаптации стандарта

• Определение условий выполнения проекта

• Отбор процессов, работ и задач, используемых в проекте или соответствующих регламентах

• Документирование требований, решений и процессов, связанных с адаптацией и полученных в ее результате

Адаптация также подразумевает выбор модели (или комбинации моделей) жизненного цикла, а также применение соответствующих методологий, детализирующих процедуры выполнения процессов, работ и задач в рамках заданных границ (содержания) жизненного цикла программного обеспечения и организационной структуры и ролевой ответственности в конкретной организации (ее подразделении) и/или в проектной группе.

* Необходимо отметить, что существует еще один стандарт жизненного цикла - ISO/IEC 15288 (выпущен в 2002 году), фокусирующийся на вопросах организации процессов жизненного цикла системного уровня (Life Cycle Processes - System) и включающий специальный процесс - “Tailoring”, т.е. настройку, адаптацию жизненного цикла к конкретным требованиям и ограничениям, существующим или принятым в конкретной организации/подразделении или для заданного проекта.

Модели жизненного цикла

Наиболее часто говорят о следующих моделях жизненного цикла:

• Каскадная (водопадная) или последовательная

• Итеративная и инкрементальная - эволюционная (гибридная, смешанная)

• Спиральная (spiral) или модель Боэма

Легко обнаружить, что в разное время и в разных источниках приводится разный список моделей и их интерпретация. Например, ранее, инкрементальная модель понималась как построение системы в виде последовательности сборок (релизов), определенной в соответствии с заранее подготовленным планом и заданными (уже сформулированными) и неизменными требованиями. Сегодня об инкрементальном подходе чаще всего говорят в контексте постепенного наращивания функциональности создаваемого продукта.

Может показаться, что индустрия пришла, наконец, к общей “правильной” модели. Однако, каскадная модель, многократно “убитая” и теорией и практикой, продолжает встречаться в реальной жизни. Спиральная модель является ярким представителем эволюционного взгляда, но, в то же время, представляет собой единственную модель, которая уделяет явное внимание анализу и предупреждению рисков. Поэтому, я попытался именно представленным выше образом выделить три модели - каскадную, эволюционную и спиральную. Их мы и обсудим.

Каскадная (водопадная) модель

Данная модель предполагает строго последовательное (во времени) и однократное выполнение всех фаз проекта с жестким (детальным) предварительным планированием в контексте предопределенных или однажды и целиком определенных требований к программной системе.

Рисунок 2. Каскадная модель жизненного цикла.

 

На рисунке изображены типичные фазы каскадной модели жизненного цикла и соответствующие активы проекта, являющиеся для одних фаз выходами, а для других - входами. Марри Кантор [Кантор, 2002, с.145-146] отмечает ряд важных аспектов, характерных для водопадной модели: “Водопадная схема включает несколько важных операций, применимых ко всем проектам:

• составление плана действий по разработке системы;

• планирование работ, связанных с каждым действием;

• применение операции отслеживания хода выполнения действий с контрольными этапами.

В связи с тем, что упомянутые задачи являются неотъемлемым элементом всех хорошо управляемых процессов, практически не существует причин, препятствующих утверждению полнофункциональных, классических методов руководства проектом, таких как анализ критического пути и промежуточные контрольные этапы. Я часто встречался с программными менеджерами, которые ломали себе голову над тем, почему же столь эффективный набор методик на практике оборачивается неудачей...”

Будучи активно используема (де факто и, например, в свое время, как часть соответствующего отраслевого стандарта в США), эта модель продемонстрировала свою “проблемность” в подавляющем большинстве ИТ-проектов, за исключением, может быть, отдельных проектов обновления программных систем для критически-важных программно-аппаратных комплексов (например, авионики или медицинского оборудования). Практика показывает, что в реальном мире, особенно в мире бизнес-систем, каскадная модель не должна применяться. Специфика таких систем (если можно говорить о “специфике” для подавляющего большинства создаваемых систем) - требования характеризуются высокой динамикой корректировки и уточнения, невозможностью четкого и однозначного определения требований до начала работ по реализации (особенно, для новых систем) и быстрой изменчивостью в процессе эксплуатации системы.

Фредерик Брукс во втором издании своего классического труда “Мифический человеко-месяц” так описывает главную беду каскадной модели [Брукс, 1995, с.245]:

“Основное заблуждение каскадной модели состоит в предположениях, что проект проходит через весь процесс один раз, архитектура хороша и проста в использовании, проект осуществления разумен, а ошибки в реализации устраняются по мере тестирования. Иными словами, каскадная модель исходит из того, что все ошибки будут сосредоточены в реализации, а потому их устранение происходит равномерно во время тестирования компонентов и системы.”_____________________________________________________________________________

В каскадной модели переход от одной фазы проекта к другой предполагает полную корректность результата (выхода) предыдущей фазы. Однако, например, неточность какого-либо требования или некорректная его интерпретация, в результате, приводит к тому, что приходится “откатываться” к ранней фазе проекта и требуемая переработка не просто выбивает проектную команду из графика, но приводит часто к качественному росту затрат и, не исключено, к прекращению проекта в той форме, в которой он изначально задумывался. Кроме того, эта модель не способна гарантировать необходимую скорость отклика и внесение соответствующих изменений в ответ на быстро меняющиеся потребности пользователей, для которых программная система является одним из инструментов исполнения бизнес-функций. И таких примеров проблем, порождаемых самой природой модели, можно привести достаточно много. Достаточно для чего? Для отказа от каскадной модели жизненного цикла.

Итеративная и инкрементальная модель - эволюционный подход

Итеративная модель предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает “мини-проект”, включая все фазы жизненного цикла в применении к созданию меньших фрагментов функциональности, по сравнению с проектом, в целом. Цель каждой итерации - получение работающей версии программной системы, включающей функциональность, определенную интегрированным содержанием всех предыдущих и текущей итерации. Результата финальной итерации содержит всю требуемую функциональность продукта. Таким образом, с завершением каждой итерации, продукт развивается инкрементально.

С точки зрения структуры жизненного цикла такую модель называют итеративной (iterative). С точки зрения развития продукта - инкрементальной (incremental). Опыт индустрии показывает, что невозможно рассматривать каждый из этих взглядов изолировано. Чаще всего такую смешанную эволюционную модель называют просто итеративной (говоря о процессе) и/или инкрементальной (говоря о наращивании функциональности продукта).

Эволюционная модель подразумевает не только сборку работающей (с точки зрения результатов тестирования) версии системы, но и её развертывание в реальных операционных условиях с анализом откликов пользователей для определения содержания и планирования следующей итерации. “Чистая” инкрементальная модель не предполагает развертывания промежуточных сборок (релизов) системы и все итерации проводятся по заранее определенному плану

наращивания функциональности, а пользователи (заказчик) получает только результат финальной итерации как полную версию системы. С другой стороны, Скотт Амблер [Ambler, 2004], например, определяет эволюционную модель как сочетание итеративного и инкрементального подходов. В свою очередь, Мартин Фаулер [Фаулер, 2004, с.47] пишет: “Итеративную разработку называют по- разному: инкрементальной, спиральной, эволюционной и постепенной. Разные люди вкладывают в эти термины разный смысл, но эти различия не имеют широкого признания и не так важны, как противостояние итеративного метода и метода водопада.”

Брукс пишет [Брукс, 1995, с.246-247], что, в идеале, поскольку на каждом шаге мы имеем работающую систему:

• можно очень рано начать тестирование пользователями;

• можно принять стратегию разработки в соответствии с бюджетом, полностью защищающую от перерасхода времени или средств (в частности, за счет сокращения второстепенной функциональности).

 
 

Таким образом, Значимость эволюционного подхода на основе организации итераций особо проявляется в снижении неопределенности с завершением каждой итерации. В свою очередь, снижение неопределенности позволяет уменьшить риски. Рисунок 3 иллюстрирует некоторые идеи эволюционного подхода, предполагая, что итеративному разбиению может быть подвержен не только жизненный цикл в целом, включающий перекрывающиеся фазы - формирование требований, проектирование, конструирование и т.п., но и каждая фаза может, в свою очередь, разбиваться на уточняющие итерации, связанные, например, с детализацией структуры декомпозиции проекта - например, архитектуры модулей системы.

Время Рисунок 3. Снижение неопределенности и инкрементальное расширение функциональности при итеративной организация жизненного цикла.

 


 

Спиральная модель

Спиральная модель (представлена на рисунке 4) была впервые сформулирована Барри Боэмом (Barry Boehm) в 1988 году [Boehm, 1988]. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла.

Боэм формулирует “top-10” наиболее распространенных (по приоритетам) рисков (используется с разрешения автора):

1. Дефицит специалистов.

2. Нереалистичные сроки и бюджет.

3. Реализация несоответствующей функциональности.

4. Разработка неправильного пользовательского интерфейса.

5. “Золотая сервировка”, перфекционизм, ненужная оптимизация и оттачивание деталей.

6. Непрекращающийся поток изменений.

7. Нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию.

8. Недостатки в работах, выполняемых внешними (по отношению к проекту) ресурсами.

9. Недостаточная производительность получаемой системы.

10. “Разрыв” в квалификации специалистов разных областей знаний.

Большая часть этих рисков связана с организационными и процессными аспектами взаимодействия специалистов в проектной команде.

Рисунок 4. Оригинальная спиральная модель жизненного цикла разработки по Боэму (используется с разрешения автора) [Boehm, 1988]

 

Сам Барри Боэм так характеризует спиральную модель разработки (используется с разрешения автора):

“Главное достижение спиральной модели состоит в том, что она предлагает спектр возможностей адаптации удачных аспектов существующих моделей процессов жизненного цикла. В то же время, ориентированный на риски подход позволяет избежать многих сложностей, присутствующих в этих моделях. В определенных ситуациях спиральная модель становится эквивалентной одной из существующих моделей. В других случаях она обеспечивает возможность наилучшего соединения существующих подходов в контексте данного проекта.

Спиральная модель обладает рядом преимуществ:

Модель уделяет специальное внимание раннему анализу возможностей повторного использования. Это обеспечивается, в первую очередь, в процессе идентификации и оценки альтернатив.

Модель предполагает возможность эволюции жизненного цикла, развитие и изменение программного продукта. Главные источники изменений заключены в целях, для достижения которых создается продукт. Подход, предусматривающий скрытие информации о деталях на определенном уровне дизайна, позволяет рассматривать различные архитектурные альтернативы так, как если бы мы говорили о единственном проектном решении, что уменьшает риск невозможности согласования функционала продукта и изменяющихся целей (требований).

Модель предоставляет механизмы достижения необходимых параметров качества как составную часть процесса разработки программного продукта. Эти механизмы строятся на основе идентификации всех типов целей (требований) и ограничений на всех “циклах” спирали разработки. Например, ограничения по безопасности могут рассматриваться как риски на этапе специфицирования требований.

Модель уделяет специальное внимание предотвращению ошибок и отбрасыванию ненужных, необоснованных или неудовлетворительных альтернатив на ранних этапах проекта. Это достигается явно определенными работами по анализу рисков, проверке различных характеристик создаваемого продукта (включая архитектуру, соответствие требованиям и т.п.) и подтверждение возможности двигаться дальше на каждом “цикле” процесса разработки.

Модель позволяет контролировать источники проектных работ и соответствующих затрат. По-сути речь идет об ответе на вопрос - как много усилий необходимо затратить на анализ требований, планирование, конфигурационное управление, обеспечение качества, тестирование, формальную верификацию и т.д. Модель, ориентированная на риски, позволяет в контексте конкретного проекта решить задачу приложения адекватного уровня усилий, определяемого уровнем рисков, связанных с недостаточным выполнением тех или иных работ.

Модель не проводит различий между разработкой нового продукта и расширением (или сопровождением) существующего. Этот аспект позволяет избежать часто встречающегося отношения к поддержке и сопровождению как ко “второсортной” деятельности. Такой подход предупреждает большого количество проблем, возникающих в результате одинакового уделения внимания как обычному сопровождению, так и критичным вопросам, связанным с расширением функциональности продукта, всегда ассоциированным с повышенными рисками.

Модель позволяет решать интегрированный задачи системной разработки, охватывающей и программную и аппаратную составляющие создаваемого продукта. Подход, основанный на управлении рисками и возможности своевременного отбрасывания непривлекательных альтернатив (на ранних стадиях проекта) сокращает расходы и одинаково применим и к аппаратной части, и к программному обеспечению.”

Описывая созданную спиральную модель, Боэм обращает внимание на то, что обладая явными преимуществами по сравнению с другими взглядами на жизненный цикл, необходимо уточнить, детализировать шаги, т.е. циклы спиральной модели для обеспечения целостного контекста для всех лиц, вовлеченных в проект (Боэм это формулирует так: “Need for further elaboration of spiral

model steps. In general, the spiral model process steps need further elaboration to ensure that all software development participants are operating in a consistent context.”). Организация ролей (ответственности членов проектной команды), детализация этапов жизненного цикла и процессов, определение активов (артефактов), значимых на разных этапах проекта, практики анализа и предупреждения рисков - все это вопросы уже конкретного процессного фреймворка или, как принято говорить, методологии разработки.

Действительно, детализация процессов, ролей и активов - вопрос методологии. Однако, рассматривая (спиральная) модель разработки, являясь концептуальным взглядом на создание продукта, требует, как и в любом проекте, определения ключевых контрольных точек проекта - milestones. Это, в большой степени, связано с попыткой ответить на вопрос “где мы?”. Вопрос, особенно актуальный для менеджеров и лидеров проектов, отслеживающих ход их выполнения и планирующих дальнейшие работы.

В 2000 году [Boehm, 2000], представляя анализ использования спиральной модели и, в частности, построенного на его основе подхода MBASE - Model-Based (System) Architecting and Software Engineering (MBASE), Боэм формулирует 6 ключевых характеристик или практик, обеспечивающих успешное применение спиральной модели:

1. Параллельное, а не последовательное определение артефактов (активов) проекта

2. Согласие в том, что на каждом цикле уделяется внимание::

• целям и ограничениям, важным для заказчика

• альтернативам организации процесса и технологических решений, закладываемых в продукт

• идентификации и разрешению рисков

• оценки со стороны заинтересованных лиц (в первую очередь заказчика)

• достижению согласия в том, что можно и необходимо двигаться дальше

3. Использование соображений, связанных с рисками, для определения уровня усилий, необходимого для каждой работы на всех циклах спирали.

4. Использование соображений, связанных с рисками, для определения уровня детализации каждого артефакта, создаваемого на всех циклах спирали.

5. Управление жизненным циклом в контексте обязательств всех заинтересованных лиц на основе трех контрольных точек:

• Life Cycle Objectives (LCO)

• Life Cycle Architecture (LCA)

• Initial Operational Capability (IOC)

6. Уделение специального внимания проектным работам и артефактам создаваемой системы (включая непосредственно разрабатываемое программное обеспечение, ее окружение, а также эксплуатационные характеристики) и жизненного цикла (разработки и использования).

Эволюционирование спиральной модели, таким образом, связано с вопросами детализации работ. Особенно стоит выделить акцент на большем внимании вопросам уточнения - требований, дизайна и кода, т.е. придание большей важности вопросам итеративности, в том числе, увеличения их количества при сокращении длительности каждой итерации. В результате, можно определить общий набор контрольных точек в сегодняшней спиральной модели:

• Concept of Operations (COO) - концепция <использования> системы;

• Life Cycle Objectives (LCO) - цели и содержание жизненного цикла;

• Life Cycle Architecture (LCA) - архитектура жизненного цикла; здесь же возможно говорить о готовности концептуальной архитектуры целевой программной системы;

• Initial Operational Capability (IOC) - первая версия создаваемого продукта, пригодная для

опытной эксплуатации;

• Final Operational Capability (FOC) - готовый продукт, развернутый (установленный и настроенный) для реальной эксплуатации.

Таким образом, мы приходим к возможному современному взгляду (см., например, представление спиральной модели в [Фатрелл, Шафер и Шафер, 2003, с.159]) на итеративный и инкрементальный - эволюционный жизненный цикл в форме спиральной модели, изображенной на рисунке 5.

Рисунок 5. Обновленная спиральная модель c контрольными точками проекта. (данное авторское представление базируется на оригинальной модели Боэма и различных ее модификациях)

 

Похоже, нам удалось более четко и естественно определить контрольные точки проекта, в определенной степени, подчеркнув эволюционную природу жизненного цикла. Теперь же пора взглянуть на жизненный цикл в контексте методологий, не просто детализирующих ту или иную модель, но добавляющих к ним ключевой элемент - людей. Роли, как представление различных функциональных групп работ, связывает создание, модификацию и использование активов проектов с конкретными участниками проектных команд. В совокупности с процессами и активами (артефактами) они позволяют нам создать целостную и подробную картину жизненного цикла.

Так как взглядов на детализацию описания жизненного цикла может быть много - безусловно, существуют различные методологии, среди которых наибольшее распространение получили:

• Rational Unified Process (RUP)

• Enterprise Unified Process (EUP)

• Microsoft Solutions Framework (MSF) в обоих представлениях: MSF for Agile и MSF for CMMI (анонсированная изначально как “MSF Formal”)

• Agile-практики (eXtreme Programming (XP), Feature Driven Development (FDD), Dynamic Systems Development Method (DSDM), SCRUM,...).


• Потребности (needs) - отражают проблемы бизнеса, персоналии или процесса, которые должны быть соотнесены с использованием или приобретением системы.

• “Разъясняющие встречи"- в оригинале звучит как “facilitated meetings”; достаточно емкий по смыслу термин, пришедший из общей практики менеджмента и базирующийся на идеях сотрудничества заинтересованных лиц для совместного анализа путей решения проблем, определения и предупреждения рисков и т.п. В отличие от “обычного”, с позволения сказать, “мозгового штурма”, как исключительной формы обсуждения тех или иных задач (часто в критические моменты работ над проектом), “запланированный мозговой штурм” - особая форма встреч участников проекта и заинтересованных лиц со стороны заказчика, посвященная обсуждению тех вопросов, ответы на которые не могут быть определены в

Copyright © Сергей Орлик, 2004-2010. 12

http://swebok.sorlik.ru



<== предыдущая лекция | следующая лекция ==>
Синицын И.В., Терновсков В.Б. 19 страница | Синицын И.В., Терновсков В.Б. 21 страница


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.013 сек.