русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

КРАТКАЯ ТЕОРИЯ


Дата добавления: 2014-11-28; просмотров: 965; Нарушение авторских прав


Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

 

 

31. Стартерные схемы ПРУ люминесцентных ламп.

Одноламповая стартерная схема включения люминесцентной лампы: Л - люминесцентная лампа, Д - дроссель, Ст - стартер, С1 - С3 - конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 - 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 - 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

 

32. Асинхронные и синхронные JK- и Т-триггеры. Основные структуры, карты Карно и временные диаграммы.

T-триггеры[править | править исходный текст]

Т-триггер (от англ. Toggle - переключатель) часто называют счётным триггером, так как он является простейшим счётчиком до 2.



Т-триггер асинхронный[править | править исходный текст]

Асинхронный Т-триггер не имеет входа разрешения счёта - Т и переключается по каждому тактовому импульсу на входе С.

Работа схемы асинхронного двухступенчатого T-триггера с парафазным входом на двух парафазных D-триггерах на восьми логических вентилях 2И-НЕ. Слева — входы, справа — выходы. Синий цвет соответствует 0, красный — 1

T-триггер синхронный[править | править исходный текст]

T Q(t) Q(t+1)

Условное графическое обозначение (УГО) синхронного T-триггера с динамическим входом синхронизации С на схемах.

Синхронный Т-триггер[14], при единице на входе Т, по каждому такту на входе С изменяет своё логическое состояние на противоположное, и не изменяет выходное состояние при нуле на входе T. Т-триггер можно построить на JK-триггере, на двухступенчатом (Master-Slave, MS) D-триггере и на двух одноступенчатых D-триггерах и инверторе.

Как можно видеть в таблице истинности JK-триггера, он переходит в инверсное состояние каждый раз при одновременной подаче на входы J и K логической 1. Это свойство позволяет создать на базе JK-триггера Т-триггер, объединяя входы J и К.

JK-триггер[править | править исходный текст]

JK-триггер с дополнительными асинхронными инверсными входами S и R

J K Q(t) Q(t+1)

JK-триггер[15][16] работает так же как RS-триггер, с одним лишь исключением: при подаче логической единицы на оба входа J и K состояние выхода триггера изменяется на противоположное. Вход J (от англ. Jerk — включение) аналогичен входу S у RS-триггера. Вход K (от англ. Kill — отключение) аналогичен входу R у RS-триггера. При подаче единицы на вход J и нуля на вход K выходное состояние триггера становится равным логической единице. А при подаче единицы на вход K и нуля на вход J выходное состояние триггера становится равным логическому нулю. JK-триггер в отличие от RS-триггера не имеет запрещённых состояний на основных входах, однако это никак не помогает при нарушении правил разработки логических схем. На практике применяются только синхронные JK-триггеры, то есть состояния основных входов J и K учитываются только в момент тактирования, например по положительному фронту импульса на входе синхронизации.

Куб Карно́ — графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок[1]. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ, является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке.

 

33. Схемотехника электронных стартеров ПРУ люминесцентных ламп.

Механизм запуска лампы с электромагнитным балластом и стартером[

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой небольшую неоновую лампу с подключенным параллельно ей конденсатором, заключенную в корпус. Один внутренний электрод неоновой лампы стартера неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве (есть также стартеры и с двумя гибкими электродами (симметричные)). В исходном состоянии электроды стартера разомкнуты. Стартер подключается параллельно лампе так, чтобы при замыкании его электродов ток проходил через спирали лампы.

В момент включения к электродам лампы и стартера прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Спирали лампы холодные. Разряд в лампе отсутствует и не возникает, так как напряжения сети недостаточно для её зажигания. Но в лампе стартера от приложенного напряжения возникает тлеющий разряд, и ток проходит через спирали лампы и электроды стартера. Ток разряда мал для разогрева спиралей лампы, но достаточен для разогрева электродов стартера, отчего биметаллический электрод изгибается и замыкается с жёстким электродом. Так как напряженине сети может изменяться относительно номинальной величины, напряжение зажигания в лампе стартера подбирается таким, что бы разряд в нем зажигался при самом низком напряжении сети. Ток, ограничиваемый индуктивным сопротивлением дросселя, течет через спирали лампы и разогревает их. Когда замкнутые электроды стартера остывают (в замкнутом состоянии теплота на них не выделяется из за малого сопротивления), цепь размыкается, и благодаря самоиндукции происходит бросок напряжения на дросселе, достаточный для зажигания разряда в лампе.

Параллельно неоновой лампе в стартере подключен конденсатор небольшой емкости, служащий для формированиярезонансного контура совместно с индуктивностью дросселя. Контур формирует импульс достаточно большой длительности чтобы зажечь лампу (при отсутствии конденсатора этот импульс будет слишком коротким, а амплитуда слишком большой, и энергия, накопленная в дросселе, израсходуется на разряд в стартере). К моменту размыкания стартера спирали лампы уже достаточно разогреты, и если бросок напряжения, возникающий за счет самоиндукции дросселя достаточен для пробоя, то происходит зажигание разряда в лампе. Рабочее напряжение лампы ниже сетевого за счёт падения напряжения на дросселе, поэтому напряжение погасания разряда в лампе стартера задают несколько больше чем напряжение на люминесцентной лампе, поэтому повторного срабатывания стартера не происходит. В процессе зажигания лампы стартер иногда срабатывает несколько раз подряд, если он размыкается в момент, когда мгновенное значение тока дросселя равно нулю, либо электроды лампы ещё недостаточно разогреты. По мере работы лампы ее рабочее напряжение незначительно возрастает, и в конце срока службы, когда на одной из спиралей лампы израсходуется активирующая паста, напряжение на ней возрастает до величины большей, чем напряжение погасания разряда в лампе стартера. Это вызывает характерное непрерывное мигание вышедшей из строя лампы. Когда лампа гаснет, можно видеть свечение катодов, разогретых током, протекающим через стартер.

 

 

34. Схемотехника электронных балластов ПРУ люминесцентных ламп.

Механизм запуска лампы с электромагнитным балластом и стартером[править | править исходный текст]

Файл:Fluorescent lamp-electronic ballast starter-movie VNr°0001.ogv

 

При включении стартер срабатывает несколько раз подряд

 

 

Стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой небольшую неоновую лампу с подключенным параллельно ей конденсатором, заключенную в корпус. Один внутренний электрод неоновой лампы стартера неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве (есть также стартеры и с двумя гибкими электродами (симметричные)). В исходном состоянии электроды стартера разомкнуты. Стартер подключается параллельно лампе так, чтобы при замыкании его электродов ток проходил через спирали лампы.

 

В момент включения к электродам лампы и стартера прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Спирали лампы холодные. Разряд в лампе отсутствует и не возникает, так как напряжения сети недостаточно для её зажигания. Но в лампе стартера от приложенного напряжения возникает тлеющий разряд, и ток проходит через спирали лампы и электроды стартера. Ток разряда мал для разогрева спиралей лампы, но достаточен для разогрева электродов стартера, отчего биметаллический электрод изгибается и замыкается с жёстким электродом. Так как напряженине сети может изменяться относительно номинальной величины, напряжение зажигания в лампе стартера подбирается таким, что бы разряд в нем зажигался при самом низком напряжении сети. Ток, ограничиваемый индуктивным сопротивлением дросселя, течет через спирали лампы и разогревает их. Когда замкнутые электроды стартера остывают (в замкнутом состоянии теплота на них не выделяется из за малого сопротивления), цепь размыкается, и благодаря самоиндукции происходит бросок напряжения на дросселе, достаточный для зажигания разряда в лампе.

 

Параллельно неоновой лампе в стартере подключен конденсатор небольшой емкости, служащий для формирования резонансного контура совместно с индуктивностью дросселя. Контур формирует импульс достаточно большой длительности чтобы зажечь лампу (при отсутствии конденсатора этот импульс будет слишком коротким, а амплитуда слишком большой, и энергия, накопленная в дросселе, израсходуется на разряд в стартере). К моменту размыкания стартера спирали лампы уже достаточно разогреты, и если бросок напряжения, возникающий за счет самоиндукции дросселя достаточен для пробоя, то происходит зажигание разряда в лампе. Рабочее напряжение лампы ниже сетевого за счёт падения напряжения на дросселе, поэтому напряжение погасания разряда в лампе стартера задают несколько больше чем напряжение на люминесцентной лампе, поэтому повторного срабатывания стартера не происходит. В процессе зажигания лампы стартер иногда срабатывает несколько раз подряд, если он размыкается в момент, когда мгновенное значение тока дросселя равно нулю, либо электроды лампы ещё недостаточно разогреты. По мере работы лампы ее рабочее напряжение незначительно возрастает, и в конце срока службы, когда на одной из спиралей лампы израсходуется активирующая паста, напряжение на ней возрастает до величины большей, чем напряжение погасания разряда в лампе стартера. Это вызывает характерное непрерывное мигание вышедшей из строя лампы. Когда лампа гаснет, можно видеть свечение катодов, разогретых током, протекающим через стартер.

 

35. Синтезировать на ПЭВМ реверсивный синхронный двоичный трехразрядный счетчик на JK-триггерах, имеющий вход управления направлением счета.

 

36. Синтезировать на ПЭВМ логическую схему для образования обратного кода (дополнения до 9) в двоично-десятичном коде (8, 4, 2, 1).

37. Отличительные особенности схем миниатюрных электронных балластов.

38. Отличительные особенности схем электронных ПРУ с питанием от низковольтных источников.

39. Синтезировать на ПЭВМ двоично-десятичный синхронный счетчик на Т-триггерах, работающий в коде 8-4-2-1.

40. Синтезировать на ПЭВМ синхронный реверсивный двоичный трехразрядный счетчик на Т-триггерах, имеющий вход управления направлением счета.

41. Синтезировать на ПЭВМ последовательностную схему, используя JK-триггеры, принимающую ряд состояний в следующем порядке: 000, 010, 101, 100, 000 и т.д.

42. Способы схемотехнического включения светодиодов, их преимущества и недостатки.

43. Синтезировать на ПЭВМ синхронный двоичный счетчик по модулю 6, используя JK-триггеры.

44. Синтезировать на ПЭВМ синхронный двоичный счетчик по модулю 12, используя JK-триггеры.

45. Схемотехника повышающего и понижающего конверторов для питания светодиодов.

46. Синтезировать на ПЭВМ последовательностную схему, используя JK-триггеры, осуществляющую последовательность отсчетов в следующем порядке: 0,1,7,3,0 и т.д.

47. Отличительные особенности схем DC/DC преобразователей для питания светодиодов.

48. Применение микроконтроллеров в схемах управления светом.

49. Синтезировать на ПЭВМ, используя ПЗУ, знакогенератор, формирующий на 7-сегментном индикаторе все символы 16-ричного кода.

50. Синтезировать на ПЭВМ, используя ПЗУ, линейный 16-разрядный индикатор типа «бегущая волна».

51. Применение AC/DC преобразователей на базе ИМС для питания светодиодных ламп от сети переменного тока.

52. Преимущества, конструктивные особенности и схемотехника электронных трансформаторов для галогенных ламп.

53. ИМС фазовых регуляторов ламп накаливания. Особенности применения.

54. АСУ светом. Способы управления, протоколы (стандарты), термины и понятия.

55. Светодинамические устройства. Принципы построения, примеры организации.

56. Блок-схема автоматизированной системы управления освещением «Умного дома».

57. Характеристика блоков и модулей системы luxCONTROL.

 

КРАТКАЯ ТЕОРИЯ



<== предыдущая лекция | следующая лекция ==>
Бесстартерные схемы включения люминесцентных ламп | NetMeeting


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.265 сек.