русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

ИСТОРИЯ ВОЗНИКНОВЕНИЯ ОС


Дата добавления: 2014-11-28; просмотров: 1430; Нарушение авторских прав


 

1) Возникновение ОС

Идея компьютера была предложена английским математиком Чарльзом Бэбиджем (Charles Babage) в середине девятнадцатого века. Его механическая «аналитическая машина» так и не смогла по-настоящему заработать, потому что технологии того времени не удовлетворяли требованиям, необходимым для изготовления нужных деталей точной механики. Конечно, никакой речи об операционной системе для этого «компьютера» не шло.

Настоящее рождение цифровых вычислительных машин произошло вскоре после окончания Второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства. В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Не было никакого системного программного обеспечения, кроме библиотек математических и служебных подпрограмм, которые программист мог использовать для того, чтобы не писать каждый раз коды, вычисляющие значение какой-либо математической функции или управляющие стандартным устройством ввода-вывода. Операционные системы все еще не появились, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления, который представлял собой примитивное устройство ввода-вывода, состоящее из кнопок, переключателей и индикаторов. С середины 50-х годов начался новый период в развитии вычислительной техники, связанный с появлением новой технической базы — полупроводниковых элементов. Выросло быстродействие процессоров, увеличились объемы оперативной и внешней памяти. Компьютеры стали более надежными, теперь они могли непрерывно работать настолько долго, чтобы на них можно было возложить выполнение действительно практически важных задач.



Наряду с совершенствованием аппаратуры заметный прогресс наблюдался также в области автоматизации программирования и организации вычислительных работ. В эти годы появились первые алгоритмические языки, и таким образом к библиотекам математических и служебных подпрограмм добавился новый тип системного программного обеспечения — трансляторы.

Выполнение каждой программы стало включать большое количество вспомогательных работ: загрузка нужного транслятора (АЛГОЛ, ФОРТРАН, КОБОЛ и т. п.), запуск транслятора и получение результирующей программы в машинных кодах, связывание программы с библиотечными подпрограммами, загрузка программы в оперативную память, запуск программы, вывод результатов на периферийное устройство. Для организации эффективного совместного использования трансляторов, библиотечных программ и загрузчиков в штат многих вычислительных центров были введены должности операторов, профессионально выполнявших работу по организации вычислительного процесса для всех пользователей этого центра.

Но как бы быстро и надежно ни работали операторы, они никак не могли состязаться в производительности с работой устройств компьютера. Большую часть времени процессор простаивал в ожидании, пока оператор запустит очередную задачу. А поскольку процессор представлял собой весьма дорогое устройство, то низкая эффективность его использования означала низкую эффективность использования компьютера в целом. Для решения этой проблемы были разработаны первые системы пакетной обработки, которые автоматизировали всю последовательность действий оператора по организации вычислительного процесса. Ранние системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными не для обработки данных, а для управления вычислительным процессом.

В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какие действия и в какой последовательности он хочет выполнить на вычислительной машине. Типовой набор директив обычно включал признак начала отдельной работы, вызов транслятора, вызов загрузчика, признаки начала и конца исходных данных.

Оператор составлял пакет заданий, которые в дальнейшем без его участия последовательно запускались на выполнение управляющей программой — монитором. Кроме того, монитор был способен самостоятельно обрабатывать наиболее часто встречающиеся при работе пользовательских программ аварийные ситуации, такие как отсутствие исходных данных, переполнение регистров, деление на ноль, обращение к несуществующей области памяти и т. д. Пакет обычно представлял собой набор перфокарт, но для ускорения работы он мог переноситься на более удобный и емкий носитель, например на магнитную ленту или магнитный диск. Сама программа-монитор в первых реализациях также хранилась на перфокартах или перфоленте, а в более поздних — на магнитной ленте и магнитных дисках.

Ранние системы пакетной обработки значительно сократили затраты времени на вспомогательные действия по организации вычислительного процесса, а значит, был сделан еще один шаг по повышению эффективности использования компьютеров. Однако при этом программисты-пользователи лишились непосредственного доступа к компьютеру, что снижало эффективность их работы — внесение любого исправления требовало значительно больше времени, чем при интерактивной работе за пультом машины.

2) Появление мультипрограммных операционных систем для мейнфреймов

Следующий важный период развития операционных систем относится к 1965-1975 годам.

В это время в технической базе вычислительных машин произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам, что открыло путь к появлению следующего поколения компьютеров. Большие функциональные возможности интегральных схем сделали возможным реализацию на практике сложных компьютерных архитектур, таких, например, как IBM/360.

В этот период были реализованы практически все основные механизмы, присущие современным ОС: мультипрограммирование, мультипроцессирование, поддержка многотерминального многопользовательского режима, виртуальная память, файловые системы, разграничение доступа и сетевая работа. В эти годы начинается расцвет системного программирования. Из направления прикладной математики, представляющего интерес для узкого круга специалистов, системное программирование превращается в отрасль индустрии, оказывающую непосредственное влияние на практическую деятельность миллионов людей. Революционным событием данного этапа явилась промышленная реализация мультипрограммирования. (Заметим, что в виде концепции и экспериментальных систем этот способ организации вычислений существовал уже около десяти лет.) В условиях резко возросших возможностей компьютера по обработке и хранению данных выполнение только одной программы в каждый момент времени оказалось крайне неэффективным. Решением стало мультипрограммирование — способ организации вычислительного процесса, при котором в памяти компьютера находилось одновременно несколько программ, попеременно выполняющихся на одном процессоре. Эти усовершенствования значительно улучшили эффективность вычислительной системы: компьютер теперь мог использоваться почти постоянно, а не менее половины времени работы компьютера, как это было раньше.

Мультипрограммирование было реализовано в двух вариантах — в системах пакетной обработки и разделения времени.

Мультипрограммные системы пакетной обработки так же, как и их однопрограммные предшественники, имели своей целью обеспечение максимальной загрузки аппаратуры компьютера, однако решали эту задачу более эффективно. В мультипрограммном пакетном режиме процессор не простаивал, пока одна программа выполняла операцию ввода-вывода (как это происходило при последовательном выполнении программ в системах ранней пакетной обработки), а переключался на другую готовую к выполнению программу. В результате достигалась сбалансированная загрузка всех устройств компьютера, а следовательно, увеличивалось число задач, решаемых в единицу времени. В мультипрограммных системах пакетной обработки пользователь по-прежнему был лишен возможности интерактивно взаимодействовать со своими программами. Для того чтобы хотя бы частично вернуть пользователям ощущение непосредственного взаимодействия с компьютером, был разработан другой вариант мультипрограммных систем — системы разделения времени. Этот вариант рассчитан на многотерминальные системы, когда каждый пользователь работает за своим терминалом. В числе первых операционных систем разделения времени, разработанных в середине 60-х годов, были TSS/360 (компания IBM), CTSS и MULTICS (Массачусетский технологический институт совместно с Bell Labs и компанией General Electric). Вариант мультипрограммирования, применяемый в системах разделения времени, был нацелен на создание для каждого отдельного пользователя иллюзии единоличного владения вычислительной машиной за счет периодического выделения каждой программе своей доли процессорного времени. В системах разделения времени эффективность использования оборудования ниже, чем в системах пакетной обработки, что явилось платой за удобства работы пользователя.

Многотерминальный режим использовался не только в системах разделения времени, но и в системах пакетной обработки. При этом не только оператор, но и все пользователи получали возможность формировать свои задания и управлять их выполнением со своего терминала. Такие операционные системы получили название систем удаленного ввода заданий. Терминальные комплексы могли располагаться на большом расстоянии от процессорных стоек, соединяясь с ними с помощью различных глобальных связей — модемных соединений телефонных сетей или выделенных каналов. Для поддержания удаленной работы терминалов в операционных системах появились специальные программные модули, реализующие различные (в то время, как правило, нестандартные) протоколы связи, Такие вычислительные системы с удаленными терминалами, сохраняя централизованный характер обработки данных, в какой-то степени являлись прообразом современных сетей, а соответствующее системное программное обеспечение — прообразом сетевых операционных систем.

К этому времени можно констатировать существенное изменение в распределении функций между аппаратными и программными средствами компьютера. Операционные системы становились неотъемлемыми элементами компьютеров, играя роль «продолжения» аппаратуры. В первых вычислительных машинах программист, напрямую взаимодействуя с аппаратурой, мог выполнить загрузку программных кодов, используя пультовые переключатели и лампочки индикаторов, а затем вручную запустить программу на выполнение, нажав кнопку «пуск». В компьютерах 60-х годов большую часть действий по организации вычислительного процесса взяла на себя операционная система. В большинстве современных компьютеров не предусмотрено даже теоретической возможности выполнения какой-либо вычислительной работы без участия операционной системы. После включения питания автоматически происходит поиск, загрузка и запуск операционной системы, а в случае ее отсутствия компьютер просто останавливается.)

Реализация мультипрограммирования потребовала внесения очень важных изменений в аппаратуру компьютера, непосредственно направленных на поддержку нового способа организации вычислительного процесса. При разделении ресурсов компьютера между программами необходимо обеспечить быстрое переключение процессора с одной программы на другую, а также надежно защитить коды и данные одной программы от непреднамеренной или преднамеренной порчи другой программой. В процессорах появился привилегированный и пользовательский режимы работы, специальные регистры для быстрого переключения с одной программы на другую, средства защиты областей памяти, а также развитая система прерываний.

В привилегированном режиме, предназначенном для работы программных модулей операционной системы, процессор мог выполнять все команды, в том числе и те из них, которые позволяли осуществлять распределение и защиту ресурсов компьютера. Программам, работающим в пользовательском режиме, некоторые команды процессора были недоступны. Таким образом, только ОС могла управлять аппаратными средствами и исполнять роль монитора и арбитра для пользовательских программ, которые выполнялись в непривилегированном, пользовательском режиме.

Система прерываний позволяла синхронизировать работу различных устройств компьютера, работающих параллельно и асинхронно, таких как каналы ввода-вывода, диски, принтеры и т. п. Аппаратная поддержка операционных систем стала с тех пор неотъемлемым свойством практически любых компьютерных систем, включая персональные компьютеры.

Еще одной важной тенденцией этого периода является создание семейств программно-совместимых машин и операционных систем для них. Примерами семейств программно-совместимых машин, построенных на интегральных микросхемах, являются серии машин IBM/360 и IBM/370 (аналоги этих семейств советского производства — машины серии ЕС), PDP-11 (советские аналоги — CM-3, CM-4, CM-1420). Вскоре идея программно-совместимых машин стала общепризнанной.

Программная совместимость требовала и совместимости операционных систем. Однако такая совместимость подразумевает возможность работы на больших и на малых вычислительных системах, с большим и с малым количеством разнообразной периферии, в коммерческой области и в области научных исследований. Операционные системы, построенные с намерением удовлетворить всем этим противоречивым требованиям, оказались чрезвычайно сложными. Они состояли из многих миллионов ассемблерных строк, написанных тысячами программистов, и содержали тысячи ошибок, вызывающих нескончаемый поток исправлений. Операционные системы этого поколения были очень дорогими. Так, разработка OS/360, объем кода для которой составил 8 Мбайт, стоила компании IBM 80 миллионов долларов.

Однако несмотря на необозримые размеры и множество проблем, OS/360 и другие ей подобные операционные системы этого поколения действительно удовлетворяли большинству требований потребителей. За это десятилетие был сделан огромный шаг вперед и заложен прочный фундамент для создания современных операционных систем.

 

3)Развитие операционных систем в 80-е годы

К наиболее важным событиям этого десятилетия можно отнести разработку стека TCP/IP, становление Интернета, стандартизацию технологий локальных сетей, появление персональных компьютеров и операционных систем для них.

Рабочий вариант стека протоколов TCP/IP был создан в конце 70-х годов. Этот стек представлял собой набор общих протоколов для разнородной вычислительной среды и предназначался для связи экспериментальной сети ARPANET с другими «сателлитными» сетями. В 1983 году стек протоколов TCP/IP был принят Министерством обороны США в качестве военного стандарта. Переход компьютеров сети ARPANET на стек TCP/IP ускорила его реализация для операционной системы BSD UNIX. С этого времени началось совместное существование UNIX и протоколов TCP/IP, а практически все многочисленные версии Unix стали сетевыми.

Внедрение протоколов TCP/IP в ARPANET придало этой сети все основные черты, которые отличают современный Интернет. В 1983 году сеть ARPANET была разделена на две части: MILNET, поддерживающую военные ведомства США, и новую ARPANET. Для обозначения составной сети ARPANET и MILNET стало использоваться название Internet, которое в русском языке со временем (и с легкой руки локализаторов Microsoft) превратилось в Интернет. Интернет стал отличным полигоном для испытаний многих сетевых операционных систем, позволившим проверить в реальных условиях возможности их взаимодействия, степень масштабируемости, способность работы при экстремальной нагрузке, создаваемой сотнями и тысячами пользователей. Стек протоколов TCP/IP также ждала завидная судьба. Независимость от производителей, гибкость и эффективность, доказанные успешной работой в Интернете, а также открытость и доступность стандартов сделали протоколы TCP/IP не только главным транспортным механизмом Интернета, но и основным стеком большинства сетевых операционных систем.

Все десятилетие было отмечено постоянным появлением новых, все более совершенных версий ОС UNIX. Среди них были и фирменные версии UNIX: SunOS, HP-UX, Irix, AIX и многие другие, в которых производители компьютеров адаптировали код ядра и системных утилит для своей аппаратуры. Разнообразие версий породило проблему их совместимости, которую периодически пытались решить различные организации. В результате были приняты стандарты POSIX и XPG, определяющие интерфейсы ОС для приложений, а специальное подразделение компании AT&T выпустило несколько версий UNIX System III и UNIX System V, призванных консолидировать разработчиков на уровне кода ядра.

Начало 80-х годов связано с еще одним знаменательным для истории операционных систем событием — появлением персональных компьютеров. С точки зрения архитектуры персональные компьютеры ничем не отличались от класса мини-компьютеров типа PDP-11, но их стоимость была существенно ниже. Если мини-компьютер позволил иметь собственную вычислительную машину отделу предприятия или университету, то персональный компьютер дал такую возможность отдельному человеку. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки «дружественного» программного обеспечения, и предоставление этих «дружественных» функций стало прямой обязанностью операционных систем. Персональные компьютеры послужили также мощным катализатором для бурного роста локальных сетей, создав для этого отличную материальную основу в виде десятков и сотен компьютеров, принадлежащих одному предприятию и расположенных в пределах одного здания. В результате поддержка сетевых функций стала для ОС персональных компьютеров необходимым условием.

Однако и дружественный интерфейс, и сетевые функции появились у операционных систем персональных компьютеров не сразу. Первая версия наиболее популярной операционной системы раннего этапа развития персональных компьютеров — MS-DOS компании Microsoft — была лишена этих возможностей. Это была однопрограммная однопользовательская ОС с интерфейсом командной строки, способная стартовать с дискеты. Основными задачами для нее были управление файлами, расположенными на гибких и жестких дисках в UNIX-подобной иерархической файловой системе, а также поочередный запуск программ. MS-DOS не была защищена от программ пользователя, так как процессор Intel 8088 не поддерживал привилегированного режима. Разработчики первых персональных компьютеров считали, что при индивидуальном использовании компьютера и ограниченных возможностях аппаратуры нет смысла в поддержке мультипрограммирования, поэтому в процессоре не были предусмотрены привилегированный режим и другие механизмы поддержки мультипрограммных систем.

Недостающие функции для MS-DOS и подобных ей ОС компенсировались внешними программами, предоставлявшими пользователю удобный графический интерфейс (например, Norton Commander) или средства тонкого управления дисками (например, PC Tools). Наибольшее влияние на развитие программного обеспечения для персональных компьютеров оказала операционная среда Windows компании Microsoft, представлявшая собой надстройку над MS-DOS.

Сетевые функции также реализовывались в основном сетевыми оболочками, работавшими поверх ОС. При сетевой работе всегда необходимо поддерживать многопользовательский режим, при котором один пользователь — интерактивный, а остальные получают доступ к ресурсам компьютера по сети. В таком случае от операционной системы требуется хотя бы некоторый минимум функциональной поддержки многопользовательского режима. История сетевых средств MS-DOS началась с версии 3.1. Эта версия MS-DOS добавила к файловой системе необходимые средства блокировки файлов и записей, которые позволили более чем одному пользователю иметь доступ к файлу. Пользуясь этими функциями, сетевые оболочки могли обеспечить разделение файлов между сетевыми пользователями.

Вместе с выпуском версии MS-DOS 3.1 в 1984 году компания Microsoft также выпустила продукт, называемый Microsoft Networks, который обычно неформально называют MS-NET. Некоторые концепции, заложенные в MS-NET, такие как введение в структуру базовых сетевых компонентов — редиректора и сетевого сервера, успешно перешли в более поздние сетевые продукты Microsoft: LAN Manager, Windows for Workgroups, а затем и в Windows NT.

Сетевые оболочки для персональных компьютеров выпускали и другие компании: IBM, Artisoft, Performance Technology и другие.

Иной путь выбрала компания Novell. Она изначально сделала ставку на разработку операционной системы со встроенными сетевыми функциями и добилась на этом пути выдающихся успехов. Ее сетевые операционные системы NetWare на долгое время стали эталоном производительности, надежности и защищенности для локальных сетей.

Первая сетевая операционная система компании Novell появилась на рынке в 1983 году и называлась OS-Net. Эта ОС предназначалась для сетей, имевших звездообразную топологию, центральным элементом которых был специализированный компьютер на базе микропроцессора Motorola 68000. Немного позже, когда фирма IBM выпустила персональные компьютеры PC XT, компания Novell разработала новый продукт — NetWare 86, рассчитанный на архитектуру микропроцессоров семейства Intel 8088.

С самой первой версии ОС NetWare распространялась как операционная система для центрального сервера локальной сети, которая за счет специализации на выполнении функций файл-сервера обеспечивает максимально возможную для данного класса компьютеров скорость удаленного доступа к файлам и повышенную безопасность данных. За высокую производительность пользователи сетей Novell NetWare расплачиваются стоимостью — выделенный файл-сервер не может использоваться в качестве рабочей станции, а его специализированная ОС имеет весьма специфический прикладной программный интерфейс (API), что требует от разработчиков приложений особых знаний, специального опыта и значительных усилий.

В отличие от Novell большинство других компаний развивали сетевые средства для персональных компьютеров в рамках операционных систем с универсальным интерфейсом API, то есть операционных систем общего назначения. Такие системы по мере развития аппаратных платформ персональных компьютеров стали все больше приобретать черты операционных систем мини-компьютеров.

В 1987 году в результате совместных усилий Microsoft и IBM появилась первая многозадачная операционная система для персональных компьютеров с процессором Intel 80286, в полной мере использующая возможности защищенного режима — OS/2. Эта система была хорошо продуманна. Она поддерживала вытесняющую многозадачность, виртуальную память, графический пользовательский интерфейс (не с первой версии) и виртуальную машину для выполнения DOS-приложений. Фактически она выходила за пределы простой многозадачности с ее концепцией распараллеливания отдельных процессов, получившей название многопоточности.

OS/2 с ее развитыми функциями многозадачности и файловой системой HPFS со встроенными средствами многопользовательской защиты оказалась хорошей платформой для построения локальных сетей персональных компьютеров. Наибольшее распространение получили сетевые оболочки LAN Manager компании Microsoft и LAN Server компании IBM, разработанные этими компаниями на основе одного базового кода. Эти оболочки уступали по производительности файловому серверу NetWare и потребляли больше аппаратных ресурсов, но имели важные достоинства — они позволяли, во-первых, выполнять на сервере любые программы, разработанные для OS/2, MS-DOS и Windows, а во-вторых, использовать компьютер, на котором они работали, в качестве рабочей станции.

Сетевые разработки компаний Microsoft и IBM привели к появлению NetBIOS — очень популярного транспортного протокола и одновременно интерфейса прикладного программирования для локальных сетей, получившего применение практически во всех сетевых операционных системах для персональных компьютеров. Этот протокол и сегодня применяется для создания небольших локальных сетей.

Не очень удачная рыночная судьба OS/2 не позволила системам LAN Manager и LAN Server захватить заметную долю рынка, но принципы работы этих сетевых систем во многом нашли свое воплощение в более удачливой операционной системе 90-х годов — Microsoft Windows NT, содержащей встроенные сетевые компоненты, некоторые из которых имеют приставку LM — от LAN Manager.

В 80-е годы были приняты основные стандарты на коммуникационные технологии для локальных сетей: в 1980 году — Ethernet, в 1985 — Token Ring, в конце 80-х — FDDI. Это позволило обеспечить совместимость сетевых операционных систем на нижних уровнях, а также стандартизовать интерфейс ОС с драйверами сетевых адаптеров.

Для персональных компьютеров применялись не только специально разработанные для них операционные системы, подобные MS-DOS, NetWare и OS/2, но и адаптировались уже существующие ОС. Появление процессоров Intel 80286 и особенно 80386 с поддержкой мультипрограммирования позволило перенести на платформу персональных компьютеров ОС UNIX. Наиболее известной системой этого типа была версия UNIX компании Santa Cruz Operation (SCO UNIX).

 



<== предыдущая лекция | следующая лекция ==>
СОДЕРЖАНИЕ | АРХИТЕКТУРА ОС


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.166 сек.