русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Коды Малера.


Дата добавления: 2014-11-28; просмотров: 693; Нарушение авторских прав


Коды Рида-Маллера относятся к линейным двоичным кодам, имеющим большие кодовые расстояния и исправляющим благодаря этому много ошибок. Они пригодны для каналов с малым отношением сигнал/помеха. Этот класс кодов интересен и потому, что с ним связаны многие другие сигналы, применяемые в радиотехнических системах: ортогональные и биортогональные сигналы, симплексные коды, -последовательности и коды Хэмминга.

Кодовое слово длины обычно рассматривается как булева функция (или ее инверсия), заданная в точках, т.е. на наборах из двоичных элементов. Можно многими способами нумеровать позиции кодового слова -разрядными двоичными векторами. Ясно, что, как в случае кодов Хэмминга, такая перестановка не влияет на помехоустойчивость получаемых кодов. Будем нумеровать позиции кодового слова числами в двоичной системе счисления , где для . Ввиду линейности кодов Рида-Маллера каждый символ кодового слова представим линейной комбинацией

,  

или ее инверсией

,  

где – известные информационные символы.

В соответствии с определением порождающей матрицы (5.16) и правилом покомпонентного сложения векторов элементы являются столбцами матрицы . Для порождающая матрица размера на имеет вид:

.  

Столбцы матрицы без верхней строки представляют собой последовательность чисел, записанных в двоичной системе счисления (младшие разряды внизу). Таким образом, столбцы матрицы можно рассматривать как последовательность состояний двоичного суммирующего счетчика:

, (5.34)

где 1 – последовательность из единиц; – последовательность состояний последнего (старшего) разряда счетчика; – последовательность состояний первого (младшего) разряда. Отметим, что перестановка столбцов и строк порождающей матрицы приводит к эквивалентным кодам.





<== предыдущая лекция | следующая лекция ==>
Помехи в каналах. | Алгоритмы цифрового кодирования.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.