Сегментация позволяет программисту рассматривать память как область, состоящую из множества адресных пространств, или сегментов. Сегменты могут иметь разные (фактически динамические) размеры. Обращения к памяти используют адреса, представляющие собой пары (номер сегмента, смещение).
Такая организация имеет ряд преимуществ по сравнению с несегментированным адресным пространством.
1. Упрощается обработка растущих структур данных. Если программисту заранее не известен размер структур данных, с которыми предстоит работать, и есть возможность использовать сегментацию, структуре данных может быть назначен ее собственный сегмент, размер которого операционная система будет увеличивать или уменьшать по мере необходимости. Если сегмент, размер которого следует увеличить, находится в основной памяти и для его увеличения нет свободного места, операционная система может переместить его в большую область или выгрузить на диск (в этом случае увеличенный сегмент будет загружен вновь при первой возможности).
2. Программы могут изменяться и перекомпилироваться независимо от компиляции или компоновки всего множества программ (что осуществляется при использовании множественных сегментов).
3. Упрощается совместное использование кода и данных разными процессами. Программист может поместить код утилиты или необходимые данные в отдельный сегмент, к которому будут обращаться другие процессы.
4. Улучшается защита. Так как сегмент представляет собой точно определенные множества программ или данных, программист или системный администратор могут назначать права доступа просто и удобно.
Организация
При рассмотрении простой сегментации мы отмечали, что каждый процесс имеет собственную таблицу сегментов, и при загрузке всех сегментов процесса в основную память создается таблица сегментов процесса, которая также загружается в основную память. В каждой записи таблицы сегментов указан начальный адрес соответствующего сегмента в основной памяти и его длина. Та же таблица сегментов нужна и при схеме виртуальной памяти, основанной на сегментации. Типичным приемом является использование отдельной таблицы сегментов для каждого процесса. Записи таблицы сегментов в этом случае усложняются (рис. 8.2,б). Поскольку в основной памяти могут находиться не все сегменты процесса, в каждой записи требуется наличие бита присутствия, указывающего, располагается ли данный сегмент в основной памяти. Если сегмент расположен в основной памяти, то запись включает его начальный адрес и длину.
Еще один бит, необходимый в данной схеме, — бит модификации, указывающий, было ли изменено содержимое сегмента со времени его последней загрузки в основную память. Если изменений не было, то при выгрузке сегмента нет необходимости в его записи на диск. Могут иметься и другие управляющие биты, например, при организации защиты или совместного использования на уровне сегментов.
Основной механизм чтения слова из памяти включает преобразование виртуального, или логического, адреса, состоящего из номера сегмента и смещения, в физический адрес с использованием таблицы сегментов. Поскольку таблица сегментов имеет переменную длину, зависящую от размера процесса, мы не можем рассчитывать на ее хранение в регистрах, и для хранения таблицы сегментов используется основная память. На рис. 8.12 предложена аппаратная реализация описываемой схемы. Когда запускается определенный процесс, в регистре хранится стартовый адрес его таблицы сегментов. Номер сегмента из виртуального адреса используется в качестве индекса таблицы, позволяющего определить начальный адрес сегмента. Для получения физического адреса к начальному адресу сегмента добавляется смещение из виртуального адреса.
Комбинация сегментации и страничной организации
И страничная организация, и сегментация имеют свои достоинства. Страничная организация, прозрачная для программиста, устраняет внешнюю фрагментацию и таким образом обеспечивает эффективное использование основной памяти. Кроме того, поскольку перемещаемые в основную память и из нее блоки имеют фиксированный, одинаковый размер, облегчается создание эффективных алгоритмов управления памятью. Сегментация, являясь видимой для программиста, имеет перечисленные в предыдущем разделе достоинства, включающие модульность, возможность обработки растущих структур данных, а также поддержку совместного использования и защиты памяти. Некоторые вычислительные системы, будучи оснащены соответствующим аппаратным обеспечением и операционной системой, используют достоинства обоих методов.
В такой комбинированной системе адресное пространство пользователя разбивается на ряд сегментов по усмотрению программиста. Каждый сегмент в свою очередь разбивается на ряд страниц фиксированного размера, соответствующего размеру кадра основной памяти. Если размер сегмента меньше размера страницы, он занимает страницу целиком. С точки зрения программиста, логический адрес в этом случае состоит из номера сегмента и смещения в нем. С позиции операционной системы смещение в сегменте следует рассматривать как номер страницы определенного сегмента и смещение в ней.
На рис. 8.13 предложена структура для поддержки комбинации сегментации и страничной организации. С каждым процессом связана одна таблица сегментов и несколько (по одной на сегмент) таблиц страниц. При работе определенного процесса в регистре процессора хранится начальный адрес соответствующей таблицы сегментов. Получив виртуальный адрес, процессор использует его часть, представляющую номер сегмента, в качестве индекса в таблице сегментов для поиска таблицы страниц данного сегмента. После этого часть адреса, представляющая собой номер страницы, используется для поиска соответствующего кадра основной памяти в таблице страниц; затем часть адреса, представляющая смещение, используется для получения искомого физического адреса путем добавления к начальному адресу кадра.
На рис. 8.2,б предложены форматы записей таблицы сегментов и таблицы страниц. Как и ранее, запись таблицы сегментов содержит значение длины сегмента, а также поле с начальным адресом сегмента, которое теперь указывает на таблицу страниц. Биты присутствия и модификации в записи таблицы сегментов в данном случае не нужны, так как эти вопросы решаются на уровне страниц. Использование других управляющих битов может продолжаться, например, в упомянутых ранее целях совместного использования и защиты. Запись таблицы страниц — по сути, та же, что и использованная в системе с "чистой" страничной организацией. При наличии страницы в основной памяти (на что указывает бит присутствия) ее номер отображается в номер соответствующего кадра; бит модификации указывает, требуется ли перезапись страницы на диск при ее выгрузке из памяти. Как и ранее, могут использоваться и другие управляющие биты.
Защита и совместное использование
Сегментация вполне пригодна для реализации стратегии защиты и совместного использования. Поскольку каждая запись таблицы сегментов включает начальный адрес и значение длины, программа не в состоянии непреднамеренно обратиться к основной памяти за границами сегмента. Для осуществления совместного использования ссылки на один и тот же сегмент могут быть в таблицах сегментов нескольких процессов. Тот же механизм, естественно, осуществим и на уровне страниц. Однако в случае использования страницони невидимы для программиста и делают определение правил защиты и совместного использования неудобным. На рис. 8.14 показаны типы защиты, которые могут быть реализованы в такой системе.
Можно обеспечить и более интеллектуальный механизм защиты. Обычная схема использует кольцевую структуру защиты, с которой мы встречались в задаче 3.6. В этой схеме внутренние кольца (с меньшими номерами) имеют большие привилегии по сравнению с внешними кольцами. Обычно кольцо 0 зарезервировано для функций ядра операционной системы, а приложения находятсяво внешнем кольце. Некоторые утилиты или операционная система могут занимать промежуточные кольца. Основными принципами системы колец являются следующие.
Программа может получить доступ только к данным, расположенным в том же или менее привилегированном кольце.
2. Программа может вызвать сервис из того же или более привилегированного кольца.