русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Основные принципы помехоустойчивого кодирования.


Дата добавления: 2014-11-28; просмотров: 2512; Нарушение авторских прав


Помехоустойчивые коды — одно из наиболее эффективных средств обеспечения высокой верности передачи дискретной информации. Создана специальная теория помехоустойчивого кодирования, быстро развивающаяся в последнее время.

Бурное развитие теории помехоустойчивого кодирования связано с внедрением автоматизированных систем, у которых обработка принимаемой информации осуществляется без участия человека. Использование для обработки информации электронных цифровых вычислительных машин предъявляет очень высокие требования к верности передачи информации.

Теорема Шеннона для дискретного канала с помехами утверждает, что вероятность ошибок за счет действия в канале помех может быть обеспечена сколь угодно малой путем выбора соответствующего способа кодирования сигналов. Из этой теоремы вытекает весьма важный вывод о том, что наличие помех не накладывает принципиально ограничений на верность передачи.

Однако в теореме Шеннона не говорится о том, как нужно строить помехоустойчивые коды.

На этот вопрос отвечает теория помехоустойчивого кодирования.

Рассмотрим сущность помехоустойчивого кодирования, а также некоторые теоремы и определения, относящиеся к теории такого кодирования.

Под помехоустойчивыми или корректирующими кодами понимают коды, позволяющие обнаружить и устранить ошибки, происходящие при передаче из-за влияния помех.

Для выяснения идеи помехоустойчивого кодирования рассмотрим двоичный код, нашедший на практике наиболее широкое применение.

Напомним, что двоичный код — это код с основание m=2.

Количество разрядов n в кодовой комбинации принято называть длиной или значностью кода. Каждый разряд может принимать значение 0 или 1. Количество единиц в кодовой комбинации называют весом кодовой комбинации и обозначают .

Например, кодовая комбинация 100101100 характеризуется значностью n=9 и весом =4.



Степень отличия любых двух кодовых комбинаций данного кода характеризуется так называемым расстоянием между кодами d. Оно выражается числом позиций или символов, в которых комбинации отличаются одна от другой. Кодовое расстояние есть минимальное расстояние между кодовым комбинациями данного кода, оно определяется как вес суммы по модулю два кодовых комбинаций. Например, для определения расстояния между комбинациями 100101100 и 110110101 необходимо просуммировать их по модулю два

110110101

Полученная в результате суммирования новая кодовая комбинация характеризуется весом =4. Следовательно, расстояние между исходными кодовыми комбинациями d=4.

Ошибки, вследствие воздействия помех, появляются в том, что в одном или нескольких разрядах кодовой комбинации нули переходят в единицы и, наоборот, единицы переходят в нули. В результате создается новая ложная кодовая комбинация.

Если ошибки происходят только в одном разряде кодовой комбинации, то такие ошибки называются однократными. При наличии ошибок в двух, трех и т.д. разрядах ошибки называются двукратными, трехкратными и т.д.

Для указания мест в кодовой комбинации, где имеются искажения символов, используется вектор ошибки . Вектор ошибки n-разрядного кода — это n-разрядная комбинация, единицы в которой указывают положение искаженных символов кодовой комбинации. Например, если для пятиразрядного кода вектор ошибки имеет =01100, то это значит, что имеют место ошибки в третьем и четвертом разрядах кодовой комбинации.

Вес вектора ошибки характеризует кратность ошибки. Сумма по модулю для искажений кодовой комбинации и вектора ошибки дает исходную неискаженную комбинацию.

Помехоустойчивость кодирования обеспечивается за счет введения избыточности в кодовые комбинации. Это значит, что из n символов кодовой комбинации для передачи информации используется k<n символов. Следовательно, из общего числа возможных кодовых комбинаций для передачи информации используется только комбинаций. В соответствии с этим все множества возможных кодовых комбинаций делятся на две группы. В первую группу входит множество разрешенных комбинаций. Вторая группа включает в себя множество запрещенных комбинаций.

Если на приемной стороне установлено, что принятая комбинация относится к группе разрешенных, то считается, что сигнал пришел без искажений. В противном случае делается вывод, что принятая комбинация искажена. Однако это справедливо лишь для таких помех, когда исключена возможность перехода одних разрешенных комбинаций в другие.

В общем случае каждая из N разрешенных комбинаций может трансформироваться в любую из N0 возможных комбинаций, т.е. всего имеется N*N0 возможных случаев передачи (рис.1), из них N случаев безошибочной передачи (на рис. 1 обозначены жирными линиями), N(N-1) случаев перехода в другие разрешенные комбинации (на рис. 1 обозначены пунктирными линиями) и N(N0- N) случаев перехода в запрещенные комбинации (на рис. 7.3 обозначены штрих пунктирными линиями).

Таким образом, не все искажения могут быть обнаружены. Доля обнаруживаемых ошибочных комбинаций составляет

(7.27)

Для использования данного кода в качестве исправляющего множество запрещенных кодовых комбинаций разбивается на N непересекающихся подмножеств Mk . Каждое из множеств Mk ставится в соответствие одной из разрешенных комбинаций.

Если принятая запрещенная комбинация принадлежит подмножеству Mi , то считается, что передана комбинация Ai (рис. 7.3).

Рис. 1

       
       
   
Ошибка будет исправлена в тех случаях, когда полученная комбинация действительно образовалась из комбинации Ai. Таким образом, ошибка исправляется в случаях, равных количеству запрещенных комбинаций. Доля исправляемых ошибочных комбинаций от общего числа обнаруживаемых ошибочных комбинаций составляет

 

     


7.28

Способ разбиения на подмножества зависит от того, какие ошибки должны исправляться данным кодом.



<== предыдущая лекция | следующая лекция ==>
Информационные основы контроля работы цифрового автомата | Методы помехоустойчивого кодирования.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.