Любой групповой код (n, k) может быть записан в виде матрицы, включающей k линейно независимых строк по n символов и, наоборот, любая совокупность k линейно независимых n-разрядных кодовых комбинаций может рассматриваться как образующая матрица некоторого группового кода. Среди всего многообразия таких кодов можно выделить коды, у которых строки образующих матриц связаны дополнительным условием цикличности.
Все строки образующей матрицы такого кода могут быть получены циклическим сдвигом одной комбинации, называемой образующей для данного кода. Коды, удовлетворяющие этому условию, получили название циклических кодов.
Сдвиг осуществляется справа налево, причем крайний левый символ каждый раз переносится в конец комбинации. Запишем, например, совокупность кодовых комбинаций, получающихся циклическим сдвигом комбинации 001011:
Число возможных циклических (n,k)-кодов значительно меньше числа различных групповых (n,k)-кодов.
При описании циклических кодов n-разрядные кодовые комбинации представляются в виде многочленов фиктивной переменной х. Показатели степени у x соответствуют номерам разрядов (начиная с нулевого), а коэффициентами при х в общем случае являются элементы поля GF(q). При этом наименьшему разряду числа соответствует фиктивная переменная х0 = 1. Многочлен с коэффициентами из поля GF(q) называют многочленом над полем GF(q). Так как мы ограничиваемся рассмотрением только двоичных кодов, то коэффициентами при х будут только цифры 0 и 1. Иначе говоря, будем оперировать с многочленами над полем GF(2). Запишем, например, в виде многочлена образующую кодовую комбинацию 01011:
G(x) = 0·x4 + 1·x3 + 0·x2 + 1·x + 1
Поскольку члены с нулевыми коэффициентами при записи многочлена опускаются, образующий многочлен:
G(x) = x3 + x + 1
Наибольшую степень х в слагаемом с ненулевым коэффициентом называют степенью многочлена. Теперь действия над кодовыми комбинациями сводятся к действиям над многочленами. Суммирование многочленов осуществляется с приведением коэффициентов по модулю два.
Указанный циклический сдвиг некоторого образующего многочлена степени n - kбез переноса единицы в конец кодовой комбинации соответствует простому умножению на х. Умножив, например, первую строку матрицы (001011), соответствующую многочлену g0(х) = x3 + x + 1, на х, получим вторую строку матрицы (010110), соответствующую многочлену х • g0(x).
Нетрудно убедиться, что кодовая комбинация, получающаяся при сложении этих двух комбинаций, также будет соответствовать результату умножения многочлена x3 + x + 1 на многочлен x+1. Действительно,
Циклический сдвиг строки матрицы с единицей в старшем (n-м) разряде (слева) равносилен умножению соответствующего строке многочлена на х содновременным вычитанием из результата многочлена хn + 1= хn– 1, т. е. с приведением по модулю хn + 1.
Отсюда ясно, что любая разрешенная кодовая комбинация циклического кода может быть получена в результате умножения образующего многочлена на некоторый другой многочлен с приведением результата по модулю xn + l. Иными словами, при соответствующем выборе образующего многочлена любой многочлен циклического кода будет делиться на него без остатка.
Ни один многочлен, соответствующий запрещенной кодовой комбинации, на образующий многочлен без остатка не делится. Это свойство позволяет обнаружить ошибку. По виду остатка можно определить и вектор ошибки.
Умножение и деление многочленов весьма просто осуществляется на регистрах сдвига с обратными связями, что и явилось причиной широкого применения циклических кодов.
4.9.2 Математическое введение к циклическим кодам
Так как каждая разрешенная комбинация n-разрядного циклического кода есть произведение двух многочленов, один из которых является образующим, то эти комбинации можно рассматривать как подмножества всех произведений многочленов степени не выше n-1. Это наталкивает на мысль использовать для построения этих кодов еще одну ветвь теории алгебраических систем, а именно теорию колец.
Как следует из приведенного ранее определения, для образования кольца на множестве n-разрядных кодовых комбинаций необходимо задать две операции: сложение и умножение.
Операция сложения многочленов уже выбрана нами с приведением коэффициентов по модулю два.
Определим теперь операцию умножения. Нетрудно видеть, что операция умножения многочленов по обычным правилам с приведением подобных членов по модулю два может привести к нарушению условия замкнутости. Действительно, в результате умножения могут быть получены многочлены более высокой степени, чем n-1, вплоть до 2(n-1), а соответствующие им кодовые комбинации будут иметь число разрядов, превышающее n и, следовательно, не относятся к рассматриваемому множеству. Поэтому операция символического умножения задается так:
1) многочлены перемножаются по обычным правилам, но с приведением подобных членов по модулю два;
2) если старшая степень произведения не превышает n-1, то оно и является результатом символического умножения;
3) если старшая степень произведения больше или равна n, то многочлен произведения делится на заранее определенный многочлен степени nи результатом символического умножения считается остаток от деления.
Степень остатка не превышает n-1, и, следовательно, этот многочлен принадлежит к рассматриваемому множеству k-разрядных кодовых комбинаций.
При анализе циклического сдвига с перенесением единицы в конец кодовой комбинации установлено, что таким многочленом n-й степени является многочлен хn+ 1.
Действительно, в результате умножения многочлена степени n-1 на х получим
G(x) = (xn-1 + xn-2 + … + x + 1)x = xn + xn-1 + … + x
Следовательно, чтобы результат умножения и теперь соответствовал кодовой комбинации, образующейся путем циклического сдвига исходной кодовой комбинации, в нем необходимо заменить хnна 1. Такая замена эквивалентна делению полученного при умножении многочлена на xn+ 1 с записью в качестве результата остатка от деления, что обычно называют взятием остатка или приведением по модулю xn+ 1 (сам остаток при этом называют вычетом).
Выделим теперь в нашем кольце подмножество всех многочленов, кратных некоторому многочлену g(x). Такое подмножество называют идеалом, а многочлен g(x)-порождающим многочленом идеала.
Количество различных элементов в идеале определяется видом его порождающего многочлена. Если на порождающий многочлен взять 0, то весь идеал будет составлять только этот многочлен, так как умножение его на любой другой многочлен дает 0.
Если за порождающий многочлен принять 1[g(x) = 1], то в идеал войдут все многочлены кольца. В общем случае число элементов идеала, порожденного простым многочленом степени n-k, составляет 2k.
Теперь становится понятным, что циклический двоичный код в построенном нами кольце n-разрядных двоичных кодовых комбинаций является идеалом. Остается выяснить, как выбрать многочлен g(x), способный породить циклический код с заданными свойствами.