Мобильная телефонная связь относится к средствам беспроводной связи и может быть двух типов:
• домашние радиотелефоны;
• мобильные сотовые телефоны.
Радиотелефоныобеспечивают ограниченную мобильность в пределах одного или нескольких рядом расположенных помещений и состоят из базовой станции и одной или нескольких переносных трубок.
Значительно большую, практически неограниченную, мобильность обеспечивает мобильная сотовая связь,которая в настоящее время позволяет передавать, кроме голоса, цифровые данные и даже видео.
Основной принцип сотовой связи заключается в разделении всей зоны охвата телефонной связью на ячейки, называемые сотами. В центре каждой соты находится базовая станция (БС), поддерживающая связь с мобильными абонентами (сотовыми телефонами), находящимися в зоне её охвата. Базовые станции обычно располагают на крышах зданий и специальных вышках. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг (рис.2.71,а), диаметр которого не превышает 10-20 км. Соты частично перекрываются и вместе образуют сеть (рис.2.71,6), которая для простоты обычно изображается в виде множества шестиугольных сот (рис.2.71,в).
Каждая сота работает на своих частотах, не пересекающихся с соседними (рис.2.72). Все соты одного размера и объединены в группы по 7 сот. Каждая из букв (А, В, С, D, Е, F, G) соответствует определённому диапазону частот, используемому в пределах одной соты. Соты с
одинаковыми диапазонами частот
разделены сотами, работающими на других частотах. Небольшие размеры сот обеспечивают ряд преимуществ по сравнению с традиционной наземной беспроводной связью, а именно:
• большое количество пользователей, которые одновременно могут работать в сети в разных частотных диапазонах (в
разных сотах);
• небольшая мощность приемно-передающего оборудования, обусловленная небольшим размером сот (выходная мощность телефонных трубок составляет десятые доли ватт);
• меньшая стоимость устройств сотовой связи как маломощных устройств.
Если в какой-то соте количество пользователей оказывается слишком большим, то она может быть разбита на соты меньшего размера, называемые микросотами, как это показано на рис.2.73.
Базовая станция, в общем случае, содержит приёмопередатчик (ПП), поддерживающий связь с мобильными телефонами, и компьютер, реализующий протоколы беспроводной мобильной связи (рис.2.74).
В небольших сетях все базовые станции соединены с коммутатором MSC (Mobile Switching Center - мобильный коммутационный центр) и имеют выход в телефонную сеть общего пользования (ТфОП),
обеспечивающий связь мобильных телефонов со стационарными (рис.2.75). В больших сетях коммутаторы 1-го уровня (MSC) соединяются с коммутатором 2-го уровня (рис.2.76) и т.д., при этом все MSC имеют выход в ТфОП напрямую, либо через коммутатор более высокого уровня (см.рис.2.76). Связанные таким образом базовые станции и коммутаторы образуют сетьсотовой связи, административно подчиняющиеся одному оператору, предоставляющему услуги мобильной связи.
Базовые станции совместно с коммутационным оборудованием реализуют функции по определению текущего местоположения подвижных пользователей и обеспечивают непрерывность связи при перемещении пользователей из зоны действия одной БС в зону действия другой БС. При включении сотовый телефон ищет сигнал базовой станции и посылает станции свой уникальный идентификационный код. Телефон и БС поддерживают постоянный радиоконтакт, периодически обмениваясь служебными данными. При выходе телефона из зоны действия БС (или
ослаблении радиосигнала) устанавливается связь с другой БС. Для этого базовая станция, фиксирующая ослабление сигнала, опрашивает все окружающие БС с целью выявить станцию, которая принимает наиболее мощный сигнал от мобильного телефона. Затем БС передаёт управление данным телефоном базовой станции той соты, в которую переместился мобильный телефон. После этого, телефону посылается информация о переходе в новую соту и предлагается переключиться на новую частоту, которая используется в этой соте. Этот процесс называется передачей и длится доли секунды.
Сотовые сети разных операторов соединяются друг с другом, а также со стационарной ТфОП, что позволяет абонентам разных операторов связываться друг с другом, а также делать звонки с мобильных телефонов на стационарные и, наоборот, со стационарных на мобильные телефоны. Используя возможности роуминга, абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора.
Поколения мобильной сотовой связи
Различают 4 поколения мобильной сотовой связи, обозначаемые как 1G, 2G, 3G, 4G. В то же время, между 2G и 3G, 3G и 4G выделяют промежуточные поколения, получившие обозначения 2.5G и 3.5G соответственно.
Эти поколения можно разбить на две группы (рис.2.77):
• аналоговая связь (1G);
• цифровая связь (все остальные, начиная с 2G, различающиеся прежде всего предоставляемыми возможностями по передаче цифровых данных, а также скоростями передачи).
Рассмотрим кратко каждое из поколений.
Поколение 1G
Первые сети мобильной сотовой связи поколения 1G появились в начале 80-х годов прошлого века и представляли собой аналоговые
беспроводные сети, основной и, фактически, единственной функцией которых была передача речи со скоростями, не превышавшими 9,6 кбит/с.
Наиболее известными стандартами сотовой связи первого поколения являются AMPS и NMT.
Стандарт AMPS (Advanced Mobile Phone System),разработанный в США, использует частотное уплотнение, формируя 832 дуплексных канала, каждый из которых состоит из двух симплексных каналов шириной по 30 кГц, в диапазоне частот от 824 до 894 МГц. Радиус действия одной базовой станции от 10 до 20 км.
Стандарт NMT (Nordic Mobile Telephone system),разработанный пятью скандинавскими странами (Данией, Финляндией, Исландией, Норвегией и Швецией), предписывает работу в диапазоне частот 453-458 МГц (NMT-450), используя до 180 каналов связи по 25 кГц каждый. Радиус действия базовой станции в зависимости от нагрузки достигает 5-25 км. Модернизированная версия NMT-900, работающая на частоте 900 МГц, позволила уменьшить размеры телефонных аппаратов, а также добавить несколько новых сервисов.
В начале 90-х годов на смену аналоговой сотовой связи пришла цифровая связь, которая в настоящее время полностью её вытеснила.
Основной недостаток аналоговой беспроводной связи - отсутствие защиты от несанкционированного перехвата разговора.
Поколение 2G
Второе и последующие поколения мобильной сотовой связи относятся к цифровым сетям связи и, в отличие от первого поколения, предоставляют пользователям, кроме передачи речи, множество дополнительных видов услуг (сервисов).
Стандартами сотовой связи второго поколения являются D-AMPS, GSM, CDMA, в основе которых лежит метод мультиплексирования TDMA.
TDMA (Time Division Multiple Access) - множественный доступ с разделением по времени - метод мультиплексирования в беспроводной связи, при котором несколько пользователей для передачи данных используют разные временные интервалы (слоты) в одном частотном диапазоне, при этом каждому пользователю предоставляется полный доступ к выделенной полосе частот в течение короткого периода времени.
Стандарт D-AMPS (Digital-AMPS)был разработан так, чтобы мобильные телефоны первого и второго поколений могли работать одновременно в одной и той же соте. Коммутатор может определять и динамически изменять тип канала (цифровой, аналоговый).
Наибольшее распространение среди перечисленных стандартов получили GSM (заменивший NMT) и CDMA.
GSM (Global System for Mobile Communications)- глобальная система мобильной связи, использующая частотное уплотнение. Каждая пара (для передачи в прямом и обратном направлении) частотных каналов разбивается с помощью временного уплотнения (TDMA) на кадровые интервалы, используемые несколькими абонентами. Каналы GSM имеют полосу пропускания в 200 кГц, что значительно шире каналов AMPS с полосой пропускания 30 кГц. Это обусловливает более высокие скорости передачи данных.
GSM, как и D-AMPS, использует частотное и временное уплотнение для разделения спектра на каналы и разделения каналов на временные интервалы соответственно.
GSM обеспечивает поддержку следующих услуг:
• передача данных (синхронный и асинхронный обмен данными, в том числе пакетная передача данных — GPRS);
• передача речевой информации;
• передача коротких сообщений (SMS);
• передача факсимильных сообщений.
• определение вызывающего номера;
• переадресация вызовов на другой номер;
• ожидание и удержание вызова;
• конференцсвязь (одновременная голосовая связь между тремя и более пользователями);
• голосовая почта и многие другие.
К основным достоинствам стандарта GSM следует отнести:
• меньшие по сравнению с аналоговыми стандартами размеры и вес телефонных аппаратов при большем времени работы без подзарядки аккумулятора;
• хорошее качество связи;
• возможность большого числа одновременных соединений;
• низкий уровень индустриальных помех в выделенных частотных диапазонах;
• защита от прослушивания и нелегального использования за счёт применения алгоритмов шифрования с разделяемым ключом.
Недостатками стандарта GSM являются:
• искажение речи при цифровой обработке и передаче;
• большее, чем в NMT-450, количество передатчиков, используемых для покрытия определённой площади.
В стандарте GSM определены 4 диапазона частот для передачи данных: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц, наиболее популярными среди которых являются 900 МГц (стандарт GSM-900) и 1800 МГц (GSM-1800). Соты могут иметь диаметр от 400 м до 50 км.
Основные отличия GSM-1800 от GSM-900:
• максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 (около 1 Вт) вдвое меньше, чем у GSM-900, что увеличивает время непрерывной работы без подзарядки аккумулятора и снижает уровень радиоизлучения;
• большая ёмкость сети;
• возможность совместного использования телефонных аппаратов стандартов GSM-900 и GSM-1800 в одной и той же сети;
• зона охвата для каждой базовой станции значительно меньше и, как следствие, необходимо большее число базовых станций.
В состав системы GSM, кроме мобильных сотовых телефонов, называемых в стандарте мобильными станциями (MS - Mobile Station), входят три подсистемы (рис.2.78).