русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Геометрическое представление математических моделей


Дата добавления: 2014-11-28; просмотров: 1111; Нарушение авторских прав


Лекция 2
Геометрически математическая модель может быть представлена как некоторая поверхность отклика, соответствующая расположению точек W = W(x) в k-мерном факторном пространстве Х.

Наглядно можно представить себе только одномерную и двухмерную поверхности отклика, причем в последнем случае удобно пользоваться топографическим способом изображения рельефа поверхности с помощью линий уровня (изолиний), построенных в двумерном факторном пространстве Х. (Рис. 1.4).

 
 

 


Рис. 1.4

Область, в которой определена поверхность отклика, называется областью определения Х*.

Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х) и выделяется с помощью ограничений, наложенных на управляющие переменные xi , записанных в виде равенств

xi = Ci , i = 1,…, m;

fj(x) = Cj , j = 1,…, l

или неравенств

xi min £ xi £ xi max , i = 1,…, k;

fj(x) £ Cj , j = 1,…, n,

При этом функции fj(x) могут зависеть как одновременно от всех переменных, так и от некоторой их части.

Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания).

Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности.

Количество вершин (впадин) определяет модальность поверхности отклика.

Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной.

Характер изменения функции при этом может быть различным (Рис. 1.5).

 

W W   W  
x* x x* x x* x

а б в



Рис. 1.5

Модель может иметь разрывы первого рода (см. рис. 1.5. а). Непрерывная унимодальная модель может иметь точки разрыва производной – разрывы второго рода (см. рис. 1.5. б). На рис. 1.5 в показана непрерывно-дифференцируемая унимодальная модель.

Для всех трех случаев, представленных на рис. 1.5, выполняется общее требование унимодальности:

Если W(x*) = extr W, то из условия х1 < x2 < x* (x1 > x2 > x*) следует
W(x1) < W(x2) < W(x*) , если extr – максимум, или W(x1) > W(x2) > W(x*) , если extr – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно падает (растет).

Наряду с унимодальными бывают полимодальные модели (Рис. 1.6).

 
 


W   x2   X1* X2*    
  x1* x2* x3* x   x1  

 

Рис. 1.6

Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 1.7). Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным хi (i=1,2); точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции); точка с расположена на «плато», на котором низкая контрастность по всем переменным хi говорит о близости экстремума.

 

 

Глава 2. Теоретические Математические модели
аналитического типа

 

Простейшие аналитические модели могут быть заданы явно в виде функции одной или нескольких переменных.

Обычно в виде функций задаются общие законы природы или общие закономерности, полученные в результате интегрирования дифференциальных уравнений. Примером такой модели может служить знаменитая формула К.Э. Циолковского:

,

определяющая приращение скорости ракеты при импульсном сжигании топлива через скорость истечения рабочего тела v и отношение начальной М0 и конечной Mк масс ракеты.

Модель, заданная в явном виде, дает исчерпывающее описание исследуемого объекта. Она позволяет построить зависимость его характеристик от управляющих факторов, взять производные и найти экстремумы модели, определить характеристики модели в окрестности экстремумов и т.д.

Очень удобна графическая интерпретация таких моделей. Однако модели в виде формул могут быть разработаны только для очень простых объектов.

 



<== предыдущая лекция | следующая лекция ==>
Классификация математических моделей | Построение математической модели сверления лазером


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.141 сек.