а) Алгебра является абелевой циклической группой, в которой роль единицы играет 0, а роль элемента, обратного к элементу играет .
б) Алгебра , где множество рациональных чисел без нуля, является абелевой группой. Обратным к элементу является .
в) Множество невырожденных квадратных матриц порядка с определителем, отличным от нуля с операцией умножения является некоммутативной группой.
г) Множество матриц одинакового порядка с операцией сложения образует абелеву группу.
Замечание. Нахождение элемента, обратного данному, в общем случае, есть унарная операция. Поэтому тип любой группы . Иногда, при записи конкретной группы указывают в скобках кроме бинарной операции ещё и эту унарную операцию, либо (чаще) нейтральный элемент группы. Например, для группы из примера 2.а соответствующая запись имеет вид , а для группы из примера 2.б - .
Поля и кольца.
Определение. Множество R с двумя определенными в нем алгебраическими операциями, сложением и умножением, называется кольцом, если относительно операции сложения оно является абелевой группой, а операция умножения дистрибутивна, т.е. для любых элементов a, b и с Î R справедливы равенства:
Если операция умножения, определенная в кольце коммутативна, то такое кольцо называется коммутативнымкольцом.
Из определения следует, что любое кольцо имеет две бинарные и одну унарную (см. пункт 2) операцию, поэтому его тип - .
Определение.Полем называется коммутативное кольцо, в котором для любого ненулевого элемента a¹ 0 и любого элемента b существует единственный элемент такой, что ax = b.
Другими словами, для любой пары элементов и уравнение имеет единственный корень. Практически это определяет в поле существование операции деления.
Пример 3.
а) Алгебра является кольцом и называется кольцом целых чисел. Она, однако, не является полем, поскольку, например, уравнение в ней неразрешимо.
б) Алгебра является полем и называется полем рациональных чисел.
Решётки.
До сих пор нами рассматривались алгебры, то есть множества, на которых заданы операции. Множества, на которых кроме операций, заданы отношения, называются алгебраическими системами. Таким образом, алгебры можно считать частным случаем алгебраических систем, у которых множество алгебраических отношений пусто. Другим частным случаем алгебраических систем являются модели – множества, на которых заданы только отношения.
Рассмотрим здесь лишь один пример алгебраической системы, который наиболее часто встречается в теоретической алгебре и её приложениях - решётки.
Определение.Решёткой называется множество , частично упорядоченное отношением нестрогого порядка , с двумя бинарными операциями и , такое что выполнены следующие условия (аксиомы решётки):
1. (идемподентность);
2. (коммутативность);
3. (ассоциативность);
4. (поглощение).
Решётка называется дистрибутивной, если выполняются два следующих условия и .
Определение. Если в решётке существует элемент 0, такой что для любого выполняется , то он называется нижней гранью (нулём) решётки.
Определение. Если в решётке существует элемент 1, такой что для любого выполняется , то он называется верхней гранью (единицей) решётки.
Определение. Решётка, имеющая верхнюю и нижнюю грани, называется ограниченной.
Теорема 6.1. Если нижняя (верхняя) грань решётки существует, то она единственная.
Определение. В ограниченной решётке элемент называется дополнением элемента , если и .