а) Все классы эквивалентности по отношению равенства состоят из одного элемента.
б) Формулы, описывающие одну и ту же элементарную функцию, находятся в одном классе эквивалентности по отношению равносильности. В данном случае счётными являются само множество формул, множество классов эквивалентности (то есть индекс разбиения) и каждый класс эквивалентности.
в) Разбиение множества треугольников по отношению равенства имеет континуальный индекс, причём каждый класс имеет также мощность континуум.
г) Разбиение множества натуральных чисел по отношению “иметь общий остаток при делении на 7” имеет конечный индекс 7 и состоит из семи счётных классов.
Отношения порядка.
Определение 1. Отношение называется отношением нестрогого порядка, если оно является рефлексивным, антисимметричным и транзитивным.
Определение 2. Отношение называется отношением строгого порядка, если оно является антирефлексивным, антисимметричным и транзитивным.
Оба типа отношений вместе называются отношениями порядка. Элементы сравнимы по отношению порядка , если выполняется одно из двух отношений или . Множество , на котором задано отношение порядка, называется полностью упорядоченным, если любые два его элемента сравнимы. В противном случае, множество называется частично упорядоченным.
а) Отношения “” и “” являются отношениями нестрогого порядка, отношения “<” и “>” – отношениями строгого порядка (на всех основных числовых множествах). Оба отношения полностью упорядочивают множества и .
б) Определим отношения “” и “<” на множестве следующим образом:
1) , если ;
2) , если и при этом ходя бы для одной координаты выполняется .
Тогда, например, , но и несравнимы. Таким образом, эти отношения частично упорядочивают .,
в) На системе подмножеств множества отношение включения “” задаёт нестрогий частичный порядок, а отношение строгого включения “” задаёт строгий частичный порядок. Например, , а и не сравнимы.
г) Отношение подчинённости в трудовом коллективе создаёт строгий частичный порядок. В нём, например, несравнимыми являются сотрудники различных структурных подразделений (отделов и т. п.).
д) В алфавите русского языка порядок букв зафиксирован, то есть всегда один и тот же. Тогда этот список определяет полное упорядочение букв, которое называется отношением предшествования. Обозначается (предшествует ). На основании отношения предшествования букв построено отношение предшествования слов, определяемое примерно, таким образом, как производится сравнение двух десятичных дробей. Это отношение задаёт полное упорядочение слов в русском алфавите, которое называется лексикографическим упорядочением.