русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция 9


Дата добавления: 2014-11-28; просмотров: 645; Нарушение авторских прав


Свойства матрицы проводимости:

1. При отсутствии в сети трансформаторов с комплексными коэффициен-тами трансформации, матрица является симметричной, то есть выполняется принцип взаимности Yij = Yji ;

2. Матрица является слабозаполненной, так как содержит большое коли-чество нулевых элементов. Причина - если узлы не связаны между собой, то их взаимная проводимость равна нулю (yij = 0), а в реальных сетях каждый узел связан с небольшим числом узлов;

Свойства 1 и 2 используются для компактного хранения матрицы проводимостей в памяти ЭВМ ( хранятся только ненулевые элементы). Коли-чество собственных проводимостей равно количеству узлов в сети, количество взаимных проводимостей равно числу ветвей ( с учетом симметричности мат-рицы).

3. Матрица проводимостей неособенная, то есть её определитель , следовательно она имеет обратную матрицу.

 

Пример: Составить матрицу проводимостей для схемы

  1 2 3 4 5 6 7 8
1 y11 -y12 -y14 -y17
2 -y21 y22 -y23
3 -y32 y33 -y35
4 -y41 y44 -y45
5 -y53 -y54 y55 -y56 -y58
6 -y65 y66 -y68
7 -y71 y77 -y78
8 -y85 -y86 -y87 y88

 

Собственные проводимости узлов схемы:

В памяти ЭВМ запоминается верхняя половина матрицы (её ненулевые элементы).

 

 

Система уравнений (4) – это система уравнений узловых напряжений в форме баланса токов и содержит n уравнений относительно n напряжений в узлах. В таком виде она не может дать искомое решение для всех комплекс-ных напряжений, так как:



1. Если является решением ( i= 1 … n ) системы уравнений, то тоже является решением, так как это соответствует пово-роту всех векторов напряжения на угол . Множитель входит во все решения и может быть сокращен. Задавая разные значения можем получить множество решений системы уравнений;

2. Если в узлах не задать (не зафиксировать) ни од-ного напряжения, то можно получить решение, не имею-щее практического смысла (например, отрицательные напряжения в узлах, либо напряжения не соответствую-щие своему классу напряжений и т. д.). При этом баланс токов в узлах будет соблюдаться.

 

Решение этой проблемы: в сети выбирают один (или несколько) узлов, в которых фиксируют модуль и угол напряжения. Это узлы с фиксацией векто-ра напряжения (ФВ). Такие узлы называются базисными или опорными по напряжению = const. В сети должен быть хотя бы один такой узел. Во всех остальных узлах схемы напряжения рассчитывается относи-тельно опорного. В схеме им соответствуют, как правило шины электростан-ций или мощных подстанций. Как правило опорный узел по напряжению сов-падает с балансирующим по мощности. Для упрощения расчетов часто задают .

Выделение в схеме сети опорных узлов с ФВ (которые совпадают с ба-лансирующими) приводит к необходимости исключения из системы (4) урав-нений, соответствующих этим узлам (т.к. уменьшается число неизвестных нап-ряжений).

 

Пример:

Запишем для схемы систему уравнений вида (4):

 

 

Система уравнений в матричной форме:

 
 

 


 

 

В качестве спорного узла выберем узел 4. Напряжение в нём задано. Нужно исключить уравнение, соответствующее данному узлу 4, т.е. четвёртую строку в матрице и в вектор - столбцах. В матрице выделим столбец и строку, соответствующие опорному узлу – номер 4.

В матрице и векторах выделяются блоки и субвектора:

YiОП – вектор – столбец взаимных проводимостей между узлами сети и опорным узлом;

YОПj – вектор – строка взаимных проводимостей между опорным узлом и другими узлами сети;

Yнеполная матрица проводимостей, получаемая из полной удалением строк и столбцов соответствующих опорным узлам;

YОПОПсобственная проводимость опорного узла;

- заданные напряжения в опорных узлах и токи в них;

- вектор искомых напряжений в узлах сети;

- вектор заданных токов в узлах сети.

 

С учётом этого в блочной форме система уравнений может быть записана:

.

 

Удаляем элементы (блоки), соответствующие уравнениям опорных узлов - YОПj, YОПОП, IОП. Тогда по правилам умножения блочных матриц получаем:

.

Переносим известные величины в правую часть:

.

Это система уравнений установившегося режима в матричной форме.

Это уравнения в виде баланса токов.

 

В результате преобразований можно получить другой вид этой системы урав-нений:

.

 

При задании в узлах сети нелинейных источников тока (генераторы или нагрузки с постоянной мощностью), установившийся режим описывается нели-нейными уравнениями:

Эти уравнения – нелинейные уравнения установившегося режима в форме баланса тока. При задании в узлах нелинейных источников тока установив-шийся режим сети можно описать, также, нелинейными уравнениями в форме баланса мощности.

 

В результате преобразований уравнения баланса мощности в матричной форме будут иметь вид:

.

 

 

Здесь - диагональная матрица, на главной диагонали которой рас-

положены сопряженные комплексы напряжений.

 



<== предыдущая лекция | следующая лекция ==>
Матричная форма записи уравнений установившегося режима | Лекция 10


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.777 сек.