русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Алгоритм Кохонена


Дата добавления: 2014-11-28; просмотров: 754; Нарушение авторских прав


Алгоритм Кохонена относится к наиболее старым алгоритмам обучения сетей с самоорганизацией на основе конкуренции, и в настоящее время существуют различные его версии [6]. В классическом алгоритме Кохонена сеть инициализируется путем приписывания нейронам определенных позиций в пространстве и связывании их с соседями на постоянной основе. В момент выбора победителя уточняются не только его веса, но также веса и его соседей, находящихся в ближайшей окрестности. Таким образом, нейрон-победитель подвергается адаптации вместе со своими соседями.

, (5.17)

В этом выражении может обозначать как эвклидово расстояние между векторами весов нейрона-победителя и -го нейрона, так и расстояние, измеряемое количеством нейронов.

Другой тип соседства в картах Кохонена- это соседство гауссовского типа, при котором функция определяется формулой

. (5.18)

Уточнение весов нейронов происходит по правилу:

. (5.19)

Степень адаптации нейронов-соседей определяется не только эвклидовым расстоянием между i-м нейроном и нейроном-победителем (w-м нейроном) , но также уровнем соседства . Как правило, гауссовское соседство дает лучшие результаты обучения и обеспечивает лучшую организацию сети, чем прямоугольное соседство.

Для достижения хороших результатов самоорганизации процесс обучения должен начинаться с больших значений и K, однако с течением времени их величина уменьшается до нуля. Изменение параметров и K может быть линейным или показательным.



<== предыдущая лекция | следующая лекция ==>
Алгоритм WTA | Алгоритм нейронного газа


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.