русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вопросы по теме


Дата добавления: 2014-11-28; просмотров: 1925; Нарушение авторских прав


1. Дайте определение портфеля ценных бумаг (ПЦБ).

2. Понятие структуры ПЦБ.

3. Как оценивается качество ПЦБ.

4. Понятие диверсификации ПЦБ.

5. Способы оценки доходности финансовых активов.

6. Возможные модели оптимизации ПЦБ и составляющие моделей.

 


Раздел III Модели исследования операций.

Существует большое количество экономических задач, в которых невозможно однозначно определить основные параметры и переменные модели изучаемого процесса или явления. В этом случае говорят, что принятие хозяйственных решений осуществляется в условиях неопределенности. Тогда предполагается для неопределенных параметров получить вероятностные характеристики (функцию плотности вероятности, среднее значение, дисперсию). В конечном счете делают вывод о допустимом варианте хозяйственного решения по некоторому, как правило, заранее определенному пороговому критерию

3.1 Модели систем массового обслуживания (СМО)

Во многих областях экономики, финансов, производства и быта важную роль играют системы, реализующие многократное выполнение однотипных задач. Такие системы называются системами массового обслуживания (СМО). Примерами СМО являются: банки различных типов, страховые организации, налоговые инспекции, аудиторские службы, различные системы связи, погрузочно-разгрузочные комплексы, автозаправочные станции, различные предприятия и организации сферы обслуживания.

3.1.1 Общие сведения о системах массового обслуживания

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а в случайные моменты времени. Обслуживание заявок также длится не постоянное, заранее известное время, а случайное, которое зависит от многих случайных, порой неизвестных нам, причин. После обслуживания заявки канал освобождается и готов к приёму следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерной загруженности СМО. В некоторые промежутки времени на входе СМО могут скапливаться заявки, что приводит к перегрузке СМО, в некоторые же другие интервалы времени при свободных каналах (устройствах обслуживания) на входе СМО заявок не будет, что приводит к недогрузке СМО, т.е. к простаиванию её каналов. Заявки, скапливающиеся на входе СМО, либо «становятся» в очередь, либо по какой-то причине невозможности дальнейшего пребывания в очереди покидают СМО необслуженными.



На рис 3.1 изображена схема СМО.

Основными элементами (признаками) систем массового обслуживания являются:

Обслуживающий узел (блок),

Поток заявок,

Очередь в ожидании обслуживания (дисциплина очереди).

Обслуживающий блок предназначен для осуществления действий согласно требованиям поступающих в систему заявок.

 

Рис. 3.1 Схема системы массового обслуживания

 

Вторая составляющая систем массового обслуживания — входной поток заявок. Заявки поступают в систему случайным образом. Обычно предполагают, что входной поток подчиняется некоторому вероятностному закону для длительности интервалов между двумя последовательно поступающими заявками, причем закон распределения считается не изменяющимся в течение некоторого достаточно продолжительного времени. Источник заявок — неограничен.

Третья составляющая — дисциплина очереди. Эта характеристика описывает порядок обслуживания заявок, поступающих на вход системы. Поскольку обслуживающий блок, как правило, имеет ограниченную пропускную способность, а заявки поступают нерегулярно, то периодически создается очередь заявок в ожидании обслуживания, а иногда обслуживающая система простаивает в ожидании заявок.

Главная особенность процессов массового обслуживания – случайность. При этом имеются две взаимодействующие стороны: обслуживаемая и обслуживающая. Случайное поведение хотя бы одной из сторон приводит к случайному характеру протекания процесса обслуживания в целом. Источниками случайности взаимодействия этих двух сторон являются случайные события двух типов.

1. Появление заявки (требования) на обслуживание. Причиной случайности данного события часто является массовый характер потребности в обслуживании.

2. Окончание обслуживания очередной заявки. Причинами случайности этого события является как случайность начала обслуживания, так и случайная продолжительность самого обслуживания.

Указанные случайные события составляют систему двух потоков в СМО: входного потока заявок на обслуживание и выходного потока обслуженных заявок.

Результатом взаимодействия указанных потоков случайных событий является число находящихся в СМО заявок в данный момент, которое принято называть состоянием системы.

Каждая СМО в зависимости от своих параметров ­ характера потока заявок, числа каналов обслуживания и их производительности, от правил организации работы, ­ обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей успешно справляться с потоком заявок.

Специальная область прикладной математики ­ теория массовогообслуживания (ТМО) – занимается анализом процессов в системах массового обслуживания. Предметом изучения теории массового обслуживания является СМО.

Цель теории массового обслуживания ­ выработка рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО. Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффективности функционирования СМО от её организации.

Задачи теории массового обслуживания носят оптимизационный характер и в конечном счете направлены на определение такого варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоя обслуживающего блока. Знание таких характеристик дает менеджеру информацию для выработки направленного воздействия на эти характеристики для управления эффективностью процессов массового обслуживания.

В качестве характеристик эффективности функционирования СМО обычно выбираются три следующие основные группы (обычно средних) показателей:

1. Показатели эффективности использования СМО:

· Абсолютная пропускная способность СМО - среднее число заявок, которое сможет обслужить СМО в единицу времени.

· Относительная пропускная способность СМО - отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу заявок поступивших за это же время.

· Средняя продолжительность периода занятости СМО.

· Коэффициент использования СМО - средняя доля времени, в течении которого СМО занята обслуживанием заявок, и т.п.

2. Показатели качества обслуживания заявок:

· Среднее время ожидания заявки в очереди.

· Среднее время пребывания заявки в СМО.

· Вероятность отказа заявке в обслуживании без ожидания.

· Вероятность того, что поступившая заявка немедленно будет принята к обслуживанию.

· Закон распределения времени пребывания заявки в очереди.

· Закон распределения времени пребывания заявки в СМО.

· Среднее число заявок, пребывающих в очереди.

· Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары «СМО − потребитель», где под «потребителем» понимают всю совокупность заявок или некий их источник: средний доход, приносимый СМО в единицу времени и т.п.

Отметим, что третья группа показателей оказывается полезной в тех случаях, когда некоторый доход, получаемый от обслуживания заявок и затраты на обслуживание измеряются в одних и тех же единицах. Эти показатели обычно носят вполне конкретный характер и определяются спецификой СМО, обслуживаемых заявок и дисциплиной обслуживания.

Впервые задачи такого типа были решены в работах А. К. Эрланга в начале прошлого века и легли в основу «Теории массового обслуживания», которая успешно развивается в настоящее время. Большой вклад в развитие этой теории внесли российские математики А.Я.Хинчин, Б.В.Гнеденко, А.Н.Колмогоров, Е.С.Вентцель и др.

3.1.2 Классификация и способы представления СМО.

Классификация СМО осуществляется по различным признакам:

· По числу обслуживающих приборов (под прибором понимается устройство или человек, обслуживающий заявки) – одноканальные, многоканальные. Например, в магазине может быть одна или несколько касс. В первом случае система называется одноканальной, во втором — многоканальной.

· В зависимости от последовательности обслуживания каждой заявки системы массового обслуживания могут быть однофазными и многофазными. В первом случае заявка обслуживается только одним прибором, во втором — последовательностью приборов. Например, касса в магазине — однофазная система, сберкасса — двухфазная, поскольку сначала клиент обслуживается контролером, а только затем получает деньги у кассира.

· В зависимости от числа мест в очереди:

Системы с отказами: число мест в очереди m является конечным, т е некоторым заявкам могут предоставляться отказы в обслуживании;

Системы с ожиданием: заявка ожидает обслуживания при любой длине очереди и любом по длительности времени ожидания.

· По способу отбора для обслуживания заявок из очереди:

Чаще всего применяется дисциплина: «первым пришел — первым обслуживается». Но возможны и другие порядки обслуживания:

ü «первым пришел — последним обслужен»,

ü случайный порядок обслуживания,

ü обслуживание с приоритетами.

· В зависимости от расположения каналов в системе обслуживания:

- параллельное расположение каналов обслуживания;

- последовательное расположение каналов обслуживания..

При параллельном расположении каналов обслуживания заявка может быть обслужена любым свободным каналом. Примером такой системы является расчетный узел в магазине самообслуживания, где число каналов обслуживания совпадает с числом кассиров-контролеров.

При последовательном расположении каналов обслуживания очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. Например, в цехе детали после обработки рабочим поступают к контролеру.

В зависимости от характера потоков событий СМО и числа каналов для СМО принята следующая система обозначений:

А/В/m/k/M (жирным шрифтом выделены обязательные для заполнения поля), где:

А – распределение времени между поступлением заявок,

В - распределение времени обслуживания заявок,

m – количество обслуживающих приборов,

к – ограничение на количество мест в очереди (по умолчанию − ∞),

М - ограничение на количество заявок в системе (по умолчанию − ∞),

В полях А и Вдопускаются следующие обозначения:

М – экспоненциальный (показательный) закон

распределения вероятностей соответствующей

случайной величины,

D – постоянное время обслуживания,

G – любой (произвольный) закон.

Например, М/М/1 – это обозначение СМО с одним обслуживающим устройством, в котором поступление заявок и время их обслуживания распределены по пуассоновскому (экспоненциальному) закону распределения.

При анализе случайных процессов с дискретными состояниями и непрерывным временем удобно пользоваться вариантом схематического изображения возможных состояний СМО в виде графа с разметкой его возможных фиксированных состояний. Состояния СМО изображаются обычно либо прямоугольниками, либо кружками, а возможные направления переходов из одного состояния в другое ориентированы стрелками, соединяющими эти состояния.

Например, размеченный граф состояний одноканальной системы процесса о газетном киоске приведен на рис. й одноканальной системы массового обслуживанияпереходов из одного состояния в другое ориентирбслуживания в газетном киоске приведен на рис.3.2:

Рис. 3.2 Размеченный граф состояний СМО.

 

Система может находиться в одном из трех состояний: S0 – канал свободен, простаивает; S1 – канал занят обслуживанием; S2 - канал занят обслуживанием и одна заявка в очереди.

Переход системы из состояния S0 в S1 происходит под воздействием простейшего потока заявок интенсивностью λ01 , а из состояния S1 в состояние S0 систему переводит поток обслуживания с интенсивностью λ10. Граф состояний системы обслуживания с проставленными интенсивностями потоков у стрелок называется размеченным. Поскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность рi(t) того, что система будет находиться в состоянии Si в момент времени t, называется вероятностью i-го состояния СМО и определяется числом поступивших заявок k на обслуживание.

Случайный процесс, происходящий в системе, заключается в том, что в случайные моменты времени t0, t1, t2, ….., tk ,….., tn система оказывается в том или другом заранее известном дискретном состоянии последовательно. Такая случайная последовательность событий называется Марковской цепью, если для каждого шага вероятность перехода из одного состояния Si в любое другое Sj не зависит от того, когда и как система перешла в состояние Si. Описывается Марковская цепь с помощью вероятности состояний, причем они образуют полную группу событий, поэтому их сумма равна единице. Если вероятность перехода не зависит от номера k, то Марковская цепь называется однородной. Зная начальное состояние системы обслуживания, можно найти вероятность состояний для любого значения k – числа заявок, поступивших на обслуживание.

Математическое изучение функционирования СМО значительно упрощается, если протекающий в ней случайный процесс является Марковским. В этом случае работа СМО сравнительно легко описывается с помощью аппарата конечных систем обыкновенных линейных дифференциальных уравнений первого порядка. В предельном режиме (при достаточно длительном функционировании сложных систем) работа СМО может быть представлена с помощью аппарата конечных систем линейных алгебраических уравнений, в результате удаётся выразить в явном виде основные характеристики эффективности функционирования СМО через параметры СМО, потока заявок и дисциплины работы СМО.

3.1.3 Потоки событий СМО.

Потоки случайных событий в СМО (времени появления заявки, времени простоя в очереди, времени обслуживания) могут быть различными и отличаться своими характеристиками. Основными характеристиками потоков являются: регулярность, стационарность, отсутствие последействия и ординарность.

Поток событий называется регулярным, если в нем события наступают последовательно через заранее заданные и строго определенные промежутки времени. Чаще встречаются нерегулярные потоки.

Поток событий называется стационарным, если вероятность наступления того или иного числа событий за какой-либо промежуток времени зависит только от длины этого промежутка и не зависит от момента его начала. Стационарность потока означает, что его вероятностные характеристики не зависят от времени. На практике потоки могут считаться стационарными только на некотором ограниченном промежутке времени (поток покупателей в магазине меняется в течение рабочего дня, но в течение разных временных интервалов поток может рассматриваться как стационарный).

Поток событий называется потоком без последействия, если число событий, попадающих на один из произвольно выбранных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток при условии, что эти промежутки не пересекаются между собой. Отсутствие последействия показывает, что последовательные события в таком потоке наступают независимо друг от друга.

Поток событий называется ординарным, если вероятность наступления за очень маленький отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попадания только одного события. Ординарность потока означает, что события в нем за достаточно малый промежуток времени либо не наступают, либо наступают по одному, а не по несколько.

В зависимости от сочетания перечисленных свойств существуют разные потоки. Если поток одновременно обладает свойствами стационарности, ординарности и отсутствием последействия, то такой поток называетсяпростейшим потоком событий (или пуассоновским ­ по имени французского математика). Математическое описание воздействия такого потока на системы оказывается наиболее простым.

Чаще всего считается, что входной и выходной потоки могут быть отнесены к простейшим. Предположим, статистические наблюдения позволили получить величину λ­среднего число заявок, появляющихся за единицу времени (интенсивность входного потока). Интенсивность простейшего потока постоянна в силу его стационарности. Обратная ей величина 1/ λ, — средний интервал времени между двумя соседними заявками.

λ ­ параметр потока, может быть выражен в разных единицах:

Плотность вероятности входного потока описывается функцией:

f (t) = λ e-λτ, t≥0. (3.1)

Математическое ожидание ­1/ λ, (3.2)

Дисперсия ­ 1/ λ2, (3.3)

Среднеквадратичное отклонение ­ 1/ λ. (3.4)

Поток с такими свойствами называется потоком с показательным (экспоненциальным) законом распределения.

Для выходного потока: среднее количество заявок, обслуживаемых в единицу времени, является интенсивностью обслуживания ─ μ.

Обратная величина 1/ μопределяет среднее время обслуживания одной заявки.

Имеет смысл рассматривать те проекты СМО, для которых среднее время обслуживания 1/μ меньше среднего промежутка времени 1/λ между поступлением заявок, ибо в противном случае очередь будет постоянно расти. В том же случае, когда 1/μ < 1/λ, через некоторое время после начала работы система перейдет в стационарный режим.

Обозначив отношение λ/μ через р, можно показать, что стационарный режим устанавливается при р < 1. Величину р называют нагрузкой системы.

Пользуясь приведенными выше параметрами входного и выходного потоков можно определить основные показатели одноканальной системы массового обслуживания с простейшими потоками по формулам:

коэффициент простоя системы

Е1 = 1-р, (3.5)

среднее число заявок в системе

Е2 = p/(1-p), (3.6)

средняя длина очереди

Е3= p2(1-p), (3.7)

среднее время пребывания заявки в системе

Е4 =l /(μ-λ), (3.8)

время пребывания заявки в очереди

Е5 = р/(μ-λ). (3.9)

На основе анализа значений приведенной системы показателей, характеризующих систему массового обслуживания можно сделать вывод о целесообразности выбора одного из вариантов функционирования СМО.

3.1.4 Пример простой СМО.

В качестве примера применения системы массового обслуживания рассмотрим задачу проектирования автозаправочной станции (АЗС).

Пример 3.1 Пусть необходимо выбрать один из нескольких вариантов строительства АЗС. Автомобили прибывают на станцию случайным образом и, если не могут быть обслужены сразу, становятся в очередь. Дисциплина очереди: «первым пришел — первым обслужен». Предположим для простоты, что во всех вариантах рассматривается только одна бензоколонка, а вариант от варианта отличается лишь ее мощностью. Средний интервал времени между прибытием автомобилей ( ) составляет 4 минуты и не зависит от варианта строительства.

Величина среднего времени обслуживания одного автомобиля ( )зависит от выбранного варианта строительства АЭС и составляет (соответственно вариантам): 5 мин, 3,5 мин, 2 мин, 1 мин, 0,5 мин. Результаты расчетов по исследованию раз­личных вариантов строительства АЗС по формулам (3.5 ÷3.9) сведены в табл. 3.1:

Таблица 3.1

Характеристики СМО Варианты строительства АЗС
Среднее время прибытия одного клиента (мин) 1/λ
Среднее число клиентов в единицу времени λ 0,25 0,25 0,25 0,25 0,25
Среднее время обслуживания одного клиента (мин) 1/μ 3,5 0,5
Среднее количество клиентов, обслуженных в единицу времени μ 0,2 0,29 0,5
Нагрузка системы р 1,25 0,88 0,5 0,25 0,13
Коэффициент простоя системы e 1 -0,25 0,13 0,5 0,75 0,88
Среднее число клиентов в системе e 2 -5 0,33 0,14
Средняя длина очереди e з -6,25 6,13 0,5 0,08 0,02
Среднее время пребывания клиента в системе e 4 -20 27,48 1,33 0,57
Время пребывания клиента в системе e5 -25 24,31 0,33 0,07

 

Из анализа результатов расчетов следует.

Первый вариант строительства АЗС не годен из-за того, что очередь в этом случае будет расти до бесконечности (р>1).

Второй вариант приемлем по показателю загруженности оборудования

р = 0,88 и, следовательно, малой средней доли простоя оборудо­вания Е1 = 0,13, но при этом варианте возникают большие очереди и, следовательно, большие средние времена простоя автомобилей Е4 ≈ 27 мин.

Третий вариант приводит к тому, что оборудование в среднем половину времени простаивает, но среднее число автомобилей в системе равно только 1, а средние потери времени равны 4 мин при среднем времени обслуживания 2 мин.

В остальных вариантах очереди практически нет, но большую часть времени оборудование простаивает, поэтому эти варианты целесообразно отбросить как неэффективные.

Окончательный выбор варианта проекта АЗС, очевидно, принадлежит лицу, принимающему решение (ЛПР), но предварительная рекомендация по результатам анализа может состоять в предложении третьего варианта, если исходить из того, что наблюдается постоянная тенденция роста автомобильного парка в стране.

Методы анализа СМО (простые, как приведено выше, и гораздо более сложные) широко применяются на практике для стационарных режимов работы системы. Кроме этого в этих моделях СМО предполагается воздействие на СМО только простейших потоков случайных событий. Если нарушается хотя бы одно из этих условий, исследование СМО сильно усложняется или становится вообще невозможным с применением конечных методов. В этом случае для анализа сложной системы приходится пользоваться методом имитационного моделирования.

 



<== предыдущая лекция | следующая лекция ==>
Вопросы по теме | Вопросы по теме


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.25 сек.