русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Классификация состояний цепей Маркова


Дата добавления: 2014-11-28; просмотров: 3535; Нарушение авторских прав


Введем классификацию состояний цепи Маркова. Множество всех состояний может быть разбито на непересекающиеся подмножества, или классы: невозвратныеи

эргодические.Их свойства определяются следующим образом. Если процесс покинул класс первого типа, он никогда в него не возвращается. Если процесс попал в класс состояний второго типа, то он никогда его не покидает. Невозвратное множество мы будем обозначать Т, а эргодическое - Ť. При этом T uŤ = S, Т∩Т = 0 . Если эргодическое множество содержит только одно состояние, то это состояние называется поглощающим. Для такого состояния S элемент переходной матрицы рii должен быть равен 1, следовательно, все остальные элементы соответствующей строки равны 0. Цепь, всеэргодические состояния которой являются поглощающими, называется поглощающей цепью.

Для цепи Маркова с N состояниями, в которой имеются как невозвратные, так и эргодические множества, структура матрицы вероятностей переходов (возможно, после перенумерации состояний) имеет канонический вид

где s - количество состояний в невозвратном множестве;

п — s - количество состояний в эргодическом множестве.

Матрица W размерности (n-s)x(n-s) определяет динамику эргодических состояний. Поскольку из множества Ťневозможно выйти, то матрица Øразмерности (n-s)x s состоит из нулей.

Матрица Q размерности sxs определяет поведение процесса до выхода из множества невозвратных состояний.

Матрица R размерности s x(n — s) определяет вероятности перехода из множества невозвратных состояний вэргодическое множество.

При возведении матрицы Р в степень перемножаются блоки, указанные в (3.9), и произвольная степень канонической матрицы имеет вид


 


Рассмотрим структуру матрицы R(k). Вычисляя последовательно степени матрицы Р с учетом (3.9), получим:



где Сki - биномиальные коэффициенты. В соответствии со сказанным выше, i-я строка матрицы R(k) содержит вероятности перехода системы во все состояния эргодического множества Ťза к шагов при старте из состояния Si € T.

Если цепь Маркова поглощающая, то W = I - единичная матрица размерности п - s, и все ее степени - также единичная матрица той же размерности.

Отметим еще два специальных вида матриц переходных вероятностей.

Матрица Р называется редуцируемой, если имеет вид



 


где Aи В - квадратные, Ø- нулевые матрицы.

Цепь Маркова, определяемая матрицей вида (3.12), фактически распадается на две независимые цепи Маркова, задавааемые соответственно матрицами А и В .

Матрица Р называется периодической, если она имеет вид

 

где нулевые матрицы - квадратные. Здесь также присутствует два множества состояний, и на каждом шаге процесс переходит из одного множества состояний в другое. Именно такую структуру имеет переходная матрица в приведенном выше примере, если рассматривать матрицу перехода внутри множества невозвратных состояний.



<== предыдущая лекция | следующая лекция ==>
Определение цепи Маркова | Оценка длительности пребывания процесса в множестве невозвратных состояний


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.