русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Гиберт Виталий


Дата добавления: 2014-11-27; просмотров: 697; Нарушение авторских прав


 

Линеаризация исходной нелинейной модели облегчает решение конкретной задачи исследования. Поэтому для упрощения моделирования и исследования, когда это возможно, желательно заменить нелинейное уравнение приближенным линейным, решение которого с достаточной степенью точности описывает свойство исходной нелинейной системы. Процесс замены нелинейной модели линейной называетсялинеаризацией [19,48].

Если дифференциальное уравнение объекта нелинейно из-за нелинейности его статической характеристики, то для линеаризации уравнения необходимо заменить нелинейную статическую характеристику.

Основное содержание идеи линеаризации состоит в том, что различие в решениях нелинейных уравнений и их линеаризованного представления не столь существенны, чтобы приводить к недопустимым ошибкам в смысле требований к точности решения поставленной задачи. Для линеаризации нелинейной модели системы управления

(4.42)

чаще всего применяют метод малых отклонений.

Техника составления линеаризованных уравнений принципиально проста. Математическое обоснование этой процедуры заключается в требованиях к виду нелинейности функции . Для допустимости линеаризации достаточно, что , и существуют и непрерывны в некоторой окрестности точки (x0, y0, u0). Тогда линеаризация осуществляется при помощи разложения в ряд Тейлора функции в окрестности точки (x0, y0, u0) и отбрасыванием всех нелинейных членов этого ряда. Интуитивно ясно, что линеаризованная модель, полученная при помощи разложения в ряд Тейлора, может оказаться пригодной для описания процессов в нелинейном объекте, не связанных с большими изменениями переменных в окрестности точки (x0, y0). Ошибка моделирования тем меньше, чем меньше отклонения переменных.

Таким образом, идея линеаризация нелинейных моделей состоит в том, что вместо (4.42) используют упрощенные математические модели, основанные на том, что процессы в системе протекают, мало отклоняясь от некоторой так называемой опорной траектории (x0,u0,y0), удовлетворяющей уравнениям:



. (4.43)

Тогда можно записать приближенную линеаризованную модель в отклонениях от этого режима:

, (4.44)

Пример 1.1. Линеаризовать уравнение состояния .

Решение. Линеаризуем уравнение состояния вблизи траектории, соответствующей . Имеем , откуда решая это уравнение, получаем, что либо (при ), либо .

Рассмотрим второй случай (так как первый тривиален):

.

.

В отклонениях , линеаризованное уравнение имеет вид:

. (4.45)

Если расчетный режим является установившимся, т.е. не зависит от времени, то коэффициенты в (4.44) также не зависят от времени. Такие системы называются стационарными. Особенно часто на практике встречаются стационарные линейные непрерывные системы, описываемые уравнениями:

, .

Если линеаризация приводит к большим погрешностям, то надо выбрать модель, линейную по параметрам:

,

где a− матрица порядка n´N; Y − нелинейная вектор-функция.

К этому классу относятся, к примеру, билинейные объекты:

x'=a1x+a2xu+a3u, где a=(a1, a2, a3), Y=(x, xu, u).

Сказанное относится и к дискретных по времени систем.

Гиберт Виталий



<== предыдущая лекция | следующая лекция ==>
Линеаризация моделей | Гиберт В. В.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.104 сек.