1. Дана целочисленная прямоугольная матрица. Определить количество строк, не содержащих ни одного нулевого элемента;
2. Дана целочисленная прямоугольная матрица. Определить количество столбцов, не содержащих ни одного нулевого элемента.
3. Дана целочисленная квадратная матрица. Определить произведение элементов в тех строках, которые не содержат отрицательных элементов;
4. Дана целочисленная квадратная матрица. Определить сумму элементов в тех столбцах, которые не содержат отрицательных элементов;
5. Дана матрица размера 5 x 4. Написать программу для вычисления I нормы матрицы: .
6. Найти наибольший элемент матрицы А(5х3) и номер строки и столбца, в котором он находится.
7. Вычислить сумму элементов каждой строки матрицы Х(4х3), определить наименьшее значение этих сумм и номер соответствующей строки.
8. Найти наибольшие элементы каждой строки матрицы Х(4х5) и записать их в массив Y.
9. Найти наибольший элемент главной диагонали матрицы А(4х4) и вывести на экран все строку, в которой он находится.
10. В массиве M[6*4] все числа различны. В каждой строке находится минимальный элемент, затем среди этих чисел выбирается максимальное. Напечатать номер строки массива М, в которой расположено выбранное число.
Исходные данные должны включать и положительные числа, и отрицательные числа, и нули.
1. Дана целочисленная прямоугольная матрица. Определить:
- количество строк, не содержащих ни одного нулевого элемента;
- максимальное из чисел, встречающихся в заданной матрице более одного раза.
2. Дана целочисленная прямоугольная матрица. Определить количество столбцов, не содержащих ни одного нулевого элемента.
Характеристикой строки целочисленной матрицы назовем сумму ее положительных четных элементов. Переставляя строки заданной матрицы, расположить их в соответствии с ростом характеристик.
3. Дана целочисленная прямоугольная матрица. Определить:
- количество столбцов, содержащих хотя бы один нулевой элемент:
- номер строки, в которой находится самая длинная серия одинаковых элементов.
4. Дана целочисленная квадратная матрица. Определить:
- произведение элементов в тех строках, которые не содержат отрицательных элементов;
- максимум среди сумм элементов диагоналей, параллельных главной диагонали матрицы.
5. Дана целочисленная квадратная матрица. Определить:
- сумму элементов в тех столбцах, которые не содержат отрицательных элементов;
- минимум среди сумм модулей элементов диагоналей, параллельных побочной диагонали матрицы.
6. Дана целочисленная прямоугольная матрица. Определить:
- сумму элементов в тех строках, которые содержат хотя бы один отрицательный элемент;
- номера строк и столбцов всех седловых точек матрицы.
Примечание. Матрица А имеет седловую точку Aij, если Aij является минимальным элементом в i-й строке и максимальным в j-ом столбце.
7. Для заданной матрицы размером 8´8 найти такие k, что k-я строка матрицы совпадает с k-м столбцом.
Найти сумму элементов в тех строках, которые содержат хотя бы один отрицательный элемент.
8. Характеристикой столбца целочисленной матрицы назовем сумму модулей его отрицательных нечетных элементов. Переставляя столбцы заданной матрицы, расположить их в соответствии с ростом характеристик.
Найти сумму элементов в тех столбцах, которые содержат хотя бы один отрицательный элемент.
9. Соседями элемента Aij в матрице назовем элементы Akl с i-1 £ k £ i+1, j-1 £ l £ j+1, (k, l) ¹ (i, j). Операция сглаживания матрицы дает новую матрицу того же размера, каждый элемент которой получается как среднее арифметическое имеющихся соседей соответствующего элемента исходной матрицы. Построить результат сглаживания заданной вещественной матрицы размером 10´10.
В сглаженной матрице найти сумму модулей элементов, расположенных ниже главной диагонали.
10. Элемент матрицы называется локальным минимумом, если он строго меньше всех имеющихся у него соседей. Подсчитать количество локальных минимумов заданной матрицы размером 10´10.
Найти сумму модулей элементов, расположенных выше главной диагонали.
11. Коэффициенты системы линейных уравнений заданы в виде прямоугольной матрицы. С помощью допустимых преобразований привести систему к треугольному виду.
Найти количество строк, среднее арифметическое элементов которых меньше заданной величины.
12. Уплотнить заданную матрицу, удаляя из нее строки и столбцы, заполненные нулями. Найти номер первой из строк, содержащих хотя бы один положительный элемент.
13. Осуществить циклический сдвиг элементов прямоугольной матрицы на n элементов вправо или вниз (в зависимости от введенного режима). n может быть больше количества элементов в строке или в столбце.
14. Осуществить циклический сдвиг элементов прямоугольной матрицы размерности M´N вправо на k элементов следующим образом: элементы 1-й строки сдвигаются в последний столбец сверху вниз, из него – в последнюю строку справа налево, из нее – в первый столбец снизу вверх, из него – в первую строку; для остальных элементов – аналогично.
15. Дана целочисленная прямоугольная матрица. Определить номер первого из столбцов, содержащих хотя бы один нулевой элемент.
Характеристикой строки целочисленной матрицы назовем сумму ее отрицательных четных элементов. Переставляя строки заданной матрицы, расположить их в соответствии с убыванием характеристик.
16. Упорядочить строки целочисленной прямоугольной матрицы по возрастанию количества одинаковых элементов в строке.
Найти номер первого из столбцов, не содержащих ни одного отрицательного элемента.
17. Путем перестановки элементов квадратной вещественной матрицы добиться того, чтобы ее максимальный элемент находился в левом верхнем углу, следующий по величине – в позиции (2,2), следующий по величине – в позиции (3,3) и т. д., заполнив таким образом всю главную диагональ.
Найти номер первой из строк, не содержащих ни одного положительного элемента.
18. Дана целочисленная прямоугольная матрица. Определить:
- количество строк, содержащих хотя бы один нулевой элемент;
- номер столбца, в котором находится самая длинная серия одинаковых элементов.
19. Дана целочисленная квадратная матрица. Определить:
- сумму элементов в тех строках, которые не содержат отрицательные элементы;
- минимум среди сумм элементов диагоналей, параллельных главной диагонали матрицы.
20. Дана целочисленная прямоугольная матрица. Определить:
- количество отрицательных элементов в тех строках, которые содержат хотя бы один нулевой элемент;
- номера строк и столбцов всех седловых точек матрицы.
Примечание. Матрица А имеет седловую точку Aij, если Aij является минимальным элементом в i-й строке и максимальным в j-ом столбце.